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Abstract 
Interconnection networks with irregular topologies (or 
irregular networks) are ideal communication subsystems 
for workstation clusters owing to their incremental 
scalability. While many deadlock-free routing schemes 
have been proposed for regular networks such as mesh, 
torus, and hypercube, they cannot be applied in irregular 
networks. This paper presents a cost-effective routing 
architecture, called TRAIN, to solve the routing problem 
with irregular networks. We show that TRAIN is a 
deadlock-free scheme. Furthermore, unlike many other 
routing schemes proposed previously for irregular 
networks, TRAIN does not require a routing table in the 
switch. Due to this feature, a TRAIN switch is small and 
the routing decision can be made rapidly. In order to 
evaluate the effectiveness of our routing scheme, analysis 
and event-driven simulation have been performed for 
various irregular networks. Our results show that TRAIN 
outperforms other schemes with a higher maximum 
throughput and lower average latency consistently. 

1. Introduction 
Multiprocessors and multicomputers achieve high 

performance using interconnection networks that provide 
high-bandwidth low-latency interprocessor communication. 
Point-to-point interconnection networks composed of 
communication switches have been employed in many 
experimental and commercial systems. Most of these 
networks use regular topologies, such as mesh, torus, and 
hypercube, to connect their switch components. With a 
regular topology, an interconnection network can be 
compactly implemented in a circuit board or chassis for 
massively parallel processors. Many routing algorithms 
have been developed for regular networks to provide 
efficient transmission of packets and guarantee deadlock 
freedom [ 1, 2, 4, 5 ,  6, 81. 

Lately, workstation clusters have emerged to become 
a cost-effective approach to build a multiprocessing 
platform. Traditional local area networks can be used to 
support inter-node traffic for such parallel systems. 
However, their performance is not maximized due to the 
limited bandwidth. Although it is possible to use regular 
networks originally designed for massively parallel 

processors, they are not incrementally scalable and cost- 
effective for workstation clusters. In comparison, an 
interconnection network with irregular topologies matches 
the cluster environment better. Such irregular networks 
consist of many small switches and can scale up the 
communication performance by adding more switches. 

Designing an efficient routing scheme for irregular 
networks is not trivial. A well designed routing scheme 
for irregular networks should be deadlock-free and provide 
high performance for various network topologies. 
Furthermore, the routing scheme should be efficiently 
implemented in a communication switch. Several routing 
architectures have been proposed for irregular networks in 
recent years [9, 101. Although these schemes are capable 
of routing packets in various network topologies and 
achieve deadlock freedom, they typically rely on a large 
hardware routing table in the communication switch. With 
such routing schemes, the size of the routing table in the 
switch grows proportionally as the size of the network 
increases. Hence, the implementation of the 
communication switch becomes relatively complex. 
Furthermore, packets traversing the switch suffer from 
long forwarding latency. 

We propose a cost-effective routing architecture 
without a routing table in the switch for irregular networks. 
The routing scheme is deadlock-free and is adaptive to 
dynamic network traffic conditions. Since there is no 
routing table in the switch, the routing decision can be 
made rapidly and thus provides low latency for packets 
traversing the network. Virtual cut-through switching is 
assumed in our interconnection network [7]. The routing 
architecture is based on a spanning tree which is a subset 
of the network, and hence is called TRAIN (Tree-based 
Routing Architecture for Irregular Networks). TRAIN 
uses the links of the spanning tree to form a route which 
can be followed by a packet from any source node to any 
destination node. The other links than those in the tree can 
be used as shortcuts to reduce the number of hops a packet 
has to traverse, which significantly improve the network 
performance. 

The next section describes the problem of designing a 
routing system for irregular networks. Previous research 
work on this issue is surveyed. In Section 3 ,  the TRAIN 
routing scheme for irregular networks is proposed. It is 
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shown that the routing algorithm is deadlock-free and can 
be efficiently implerpented in a switch. The performance 
of TRAIN is evalualed in Section 4. It is compared with 
other routing schernes based on analysis for unloaded 
networks and event-driven simulation for loaded networks. 
Section 5 concludes this work with a summary. 

2. The Routing Problem for Irregular Networks 
An irregular network consists of an arbitrary number 

of nodes and has an irregular topology. Figure 1 shows an 
example of an irregular network consisting of 9 nodes [9]. 
Each node includes (3 computing element and an associated 
communication switch in the network. We assume that a 
communication swi [ch connects to only one computing 
element in the rest (of the paper. In fact, it is possible to 
connect more than one computing element to a 
communication switzh. 

Figure 1: An irregular network. 

Figure 2 shows a workstation cluster with an irregular 
network from Figure 1. A collection of communication 
switches constitute the interconnection network. Each 
node in the network has a computing element associated 
with a communication switch. Note that some ports of the 
switches are left open in this example. These free ports 
can be used to isonnect to other switches or more 
computing elements. The efficient design and 
implementation of the communication switch and its 
routing function have a significant impact on the 
performance of the interconnection network. 

A generic architecture of the communication switch is 
shown in Figure 3 [11, 121. Each port in the switch is 
associated with a pair of input and output channels. The 
link connected to a port in the switch leads to either a 
computing element or a communication switch. A 
communication switch often includes buffers at their input 
ports for storing incoming packets that cannot be 
forwarded immediately due to output port contention or 
blocking. The crossbar in the switch provides unblocking 
paths between the input ports and output ports. A 
hardware routing decision module determines which 
output port an arriking packet will be destined to based on 
the information in the packet header. 

89 

Figure 2: An interconnection network corresponding 
to the example topology in Figure 1. Each computing 
element is associated with a communication switch in a 
node. 

Figure 3: A generic architecture of a communication 
switch with input buffers. 

Without a careful design for the routing scheme, 
deadlock may happen to an interconnection network. 
When deadlock occurs, a set of messages are blocked 
forever in the network [4, 5, 81. Many deadlock-free 
routing algorithms have been proposed for regular 
networks such as mesh, torus, and hypercube. Most of 
these routing algorithms achieve deadlock freedom by 
avoiding the possibility of deadlock situations. Such 
deadlock avoidance is typically accomplished by removing 
channel dependency cycles for the network 14, 51. 
Deadlock avoidance can be implemented in an algorithmic 
routing function in the communication switch. A well 
designed routing algorithm should achieve deadlock 
freedom without significantly reducing the network 
performance. 

While many effective routing schemes have been 
proposed for regular networks, there have been very few 
counterparts for irregular networks. Although deadlock 
detection and recovery can be used to resolve the problem, 
the complexity of the communication switch based on that 
is significantly increased. Hence, most practical designs 
proposed recently for deadlock-free routing in irregular 
networks rely on deadlock avoidance. 

The DEC Autonet project has proposed the 
up*/down* routing algorithm for their network [ 101. 
Autonet is a self-configured, switch-based local area 
network. In an existing network, a spanning tree is 



constructed by a distributed algorithm and each node is 
assigned an ID during initialization. Each link in the 
spanning tree is assigned a direction with “up” indicating 
“toward the root.” A link leading to a parent node in the 
tree is in the “up” direction. A link leading to a node with 
a smaller ID at the same level is also in the “up” direction. 
The basic idea of the up*/down* routing is that every 
packet has to be routed for zero or more hops in the “up” 
direction, and then for zero or more hops in the “down” 
direction. A legal route never uses a link in the “up” 
direction after it has been in the “down” direction. Hence, 
channel dependency cycle is prohibited and deadlock 
freedom is achieved. 

Note that in Autonet the links connecting nodes at 
different levels in the tree do not participate in routing 
packets, The bandwidth of these links is thus wasted. In 
Autonet, each packet follows the shortest one of all the 
legal paths, and this is implemented based on a routing 
table in each switch. Since each switch has an associated 
routing table, and searching the table is part of the routing 
function in the switch, the complexity of the switch is 
relatively high. 

Adaptive trail routing is another scheme proposed for 
irregular networks [9]. The routing algorithm is based on 
two unidirectional adaptive trails constructed from two 
opposite unidirectional Eulerian trails. The links not in the 
two Eulerian trails can be used as shortcuts as long as they 
do not cause deadlock. The Eulerian trails are determined 
based on some heuristics during initialization. However, 
not every network topology has such Eulerian trails. 
Furthermore, like Autonet routing, the switch for adaptive 
trail routing requires a routing table, which increases the 
switch complexity. 

3. A Tree-based Routing Architecture for Irregular 
Networks 

Designing a deadlock-free routing scheme for 
irregular networks is more complex than for regular 
networks. As discussed in Section 2, Autonet routing and 
adaptive trail routing have been proposed to solve the 
problem, Although these two schemes are deadlock-free, 
they require a routing table built in the switch. As the 
network grows, the size of the routing table increases 
significantly. In this section, we propose a tree-based 
routing scheme which requires no routing table in the 
switch. This routing scheme is called TRAIN (Tree-based 
Routing Architecture for Irregular Networks). 

3.1. TRAIN Routing 
TRAIN is a routing scheme similar to the Autonet 

routing in that it also uses a subset of the network to 
construct a tree. A packet sets out from the source node 
and follows the tree structure to reach any other node in 

the tree. With TRAIN, however, those links not in the tree 
can also be used for packet transmission. These links are 
called shortcut links or simply shortcuts. The basic idea of 
TRAIN is that a packet arriving in a switch takes 
advantage of the shortcuts if they provide a shorter route to 
the destination node than the “planned” route. A planned 
route is the one that follows the tree structure. These 
shortcuts help reduce the number of hops a packet has to 
traverse from the source node to the destination node. In 
addition, more bandwidth is provided in the network and 
the traffic congestion in the area near the root of the tree is 
mitigated. 

When a packet arrives in a switch, the routing decision 
module of the switch checks if there is a shortcut from 
there leading to a switch “closer” to the destination node. 
If such a shortcut exists, a packet is routed to the 
neighboring switch the shortcut leads to. If such a shortcut 
does not exist or is currently blocked, the packet simply 
continues to follow the planned tree route. Note that a 
packet may utilize shortcuts more than once along the 
route from the source node to the destination node. A key 
to the effectiveness of the TRAIN scheme is that distance 
calculation between two nodes should be simple. Such a 
distance calculation function should be efficiently 
implemented in an algorithmic hardware and no routing 
table is needed in the switch. We have developed a 
distance calculation algorithm which can be used in 
TRAIN. 

n 
121 - I Z O +  loo 4 ooo- 200- 220 

Figure 4: An example network with TRAIN. A packet 
arrives in node 120 takes the shortcut leading to node 
200. 

Figure 4 shows an example network with TRAIN. 
The number beside each node is the node ID used for 
distance calculation. The labeling method is as follows. 
The root node is labeled 00 ... 0. The tree is not necessarily 
a binary tree. The children of the root are labeled 10 ... 0, 
20 ... 0, and so on. From source node 121 to destination 
node 220, for instance, the planned tree route takes five 
hops. However, when the packet arrives in node 120, it 
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finds that the shortcut leading to node 200 provides a 
shorter route. Hence the eventual distance that the packet 
traverses from node 1 21 to node 220 is reduced from 5 to 
3. Note that in order for the routing decision module to 
work, a switch is required to store the neighboring nodes’ 
IDS the shortcuts lead to. This information can be set up 
during initialization. 

3.2. Distance Calculation 
Distance calculation between two nodes is critical to 

the performance of the TRAIN scheme. Our solution to 
this problem is shown In Figure 5 ,  taking the example from 
Figure 4. The algorithm is described in the following: 

Algorithm Distance-Calculation: 
Step 1: From the two digit strings of two nodes’ 

IDS, remove the common prefix string 
from the two node IDS. 

Step 2: The distance between two nodes is 
exactly the total number of non-zero 
digits le Ft in the two strings. 

In the example in Figure 5, for the case on the left there is 
no common prefix string and hence the distance from node 
100 to node 220 is 3 since there are three non-zero digits. 
The distance from m d e  200 to node 220 is 1 since the 
common prefix string “2” is deleted and only one non-zero 
digit is left. 

1 0 0  xo 0 

2 2 0  2 2  0 

3 1 

Figure 5: Distance calculation example from Figure 4. 
For the case on the left, there are no common prefix 
digits and so the distance from node 100 to node 220 is 
3 since there are three non-zero digits. The distance 
from node 200 to node 220 is 1 since the common 
prefix string “2” is deleted and only one non-zero digit 
is left. 

The TRAIN algorithm can be described in the 

Algorithm TUAIiV-Routing: 

Step I :  For an arriving packet, calculate the 
possible distance from the current node 
to the destination node based on the 
destinaiion node ID of the packet and 
the stored IDS of the neighboring nodes. 

Step 2: If any unblocked shortcut provides a 
shorter route than the tree route, pick 

following algorithm: 

the most profitable unblocked shortcut 
and route the packet to the neighboring 
node this shortcut leads to. 

Step 3: If all the profitable shortcuts are blocked 
or there is no profitable shortcut from 
the current node, route the packet to the 
neighboring node along the tree route. 

Step 4: If all the profitable shortcuts and the tree 
link are blocked in the current cycle, 
wait for the next cycle and start from 
Step 2 again. 

In the above algorithm, profitable shortcuts are those 
shortcut links that can bring the packet closer to the 
destination. 

As mentioned above, each switch can be associated 
with one or more computing elements. If there is only one 
computing element coupled with each switch, we can 
assign a unique node ID for both of them. If there are two 
or more computing elements connected to a switch, we can 
treat the computing elements and the switch as 
independent network nodes and give them different node 
IDS. The TRAIN scheme can be applied in the above two 
types of configuration. Figure 6 shows the TRAIN 
configuration of the interconnection network from the 
example in Figure 2. Note that six links are used as 
shortcuts. 

TreeLink - 
Shortcut Link - - - - - - 

Luwl 1 

kwl2 

L u v d  3 

Figure 6: The TRAIN configuration of the 
interconnection network from the example in Figure 2. 
Six links are used as shortcuts. 

3.3. Deadlock Freedom 
Virtual cut- 

through switching is used in TRAIN and it is part of the 
mechanism to prevent deadlock. Virtual cut-through is a 
switching technique similar to the popular wormhole 
switching in that a packet can start to forward to the next 
node if the packet header has arrived and the destined 
output port is decided. However, virtual cut-through 
switching requires the next switch to have sufficient buffer 
space to store the packet. When a packet is blocked at the 

The TRAIN scheme is deadlock-free. 
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head, the rest of the packet will keep moving forward and 
stay in the switch where blocking occurs. Although 
virtual cut-through switching requires more buffer space 
than wormhole switching, it is feasible to implement a 
single-chip switch that can accommodate several whole 
packets with current VLSI technology. Furthermore, with 
virtual cut-through switching, no packets can be blocked 
in place across several nodes waiting for transmission. 
This helps reduce network contention. 

The mechanism for deadlock prevention is simple in 
TRAIN. Figure 7 shows why deadlock cannot happen in 
TRAIN. Since there exists no cycle in any tree, at least a 
shortcut link is required to form a channel dependency 
cycle. Suppose such a cycle exists and the shortcut link is 
part of the dependency cycle in the network. At node B, 
packets coming from node A will never cross the shortcut 
and go to node D. The reason for this is that when a 
packet is “going down” (away from the root) in the tree, 
the destination node must belong to the offspring of the 
current node (node B in this case). Hence the packet will 
never go to another tree branch. On the other hand, at 
node B, packets coming from node C can choose to cross 
the shortcut or go up to node A, depending on their 
destination. In the TRAIN scheme, a shortcut leading to a 
shorter route has a higher priority than the tree link toward 
the root. However, when the shortcut is blocked, the 
packet follows the tree link adaptively. Furthermore, for 
the packets arriving in node B from yet another shortcut, 
they can also adaptively choose to follow the tree link if 
the shortcut leading to node D is blocked. A shortcut link 
thus can never become part of a channel dependency cycle, 
and deadlock freedom is guaranteed. Note that if 
wormhole switching is used, deadlock may occur in a 
network with a routing scheme like TRAIN. The reason 
for this is that the header of a packet may have crossed the 
shortcut and then find that it is blocked ahead. 

to -I 

Avg. Latency 
Varianceof 
Utilization 

h Shortest TRAIN Autonet Tree ATR 
Path 
1.75 1.78 1.97 2.39 1 79 
4.80 6.58 10.86 25.42 18 29 Y 

\ r -  

Figure 7: Deadlock prevention in TRAIN. 

4. Performance Evaluation 
In order to evaluate the effectiveness of the TRAIN 

scheme, we have analyzed the latency for an average 
packet in various network topologies. It is assumed that 
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shown in Figure 8. The horizontal dimension in the graph 
is the count of usage of the links, which is obtained by 
counting the times each link is “used” from all the possible 
unique routes in the network. The vertical dimension is 
the number of link:; which have a certain count of link 
usage. Figure 8 shows that the curve indicated by the solid 
line exhibits better fairness than the curve indicated by the 
dotted line since the former has a lower variance. The 
variance of link utilization for the above five schemes is 
also presented in Table 1. TRAIN has the best variance 
other than the shortest path scheme in this case. 

Avg Latemy 
Avg Min 

(<I““,  “iU,aCL 

Figure 8: DistribLtion of link utilization. Number of 
links vs. count of usage. The curve indicated by the 
solid line has a lower variance than the one indicated 
by the dotted line. 

The analysis results in Table 1 are obtained based on 
an example network only, and the conclusions may not 
hold for other networks. In order to further investigate the 
performance of these routing schemes, we have 
implemented a program to analyze them from many 
randomly generated networks. Table 2 shows the results 
from 50 randomly generated networks which are 
composed of 16 nodes and 32 links. The tree for TRAIN, 
Autonet routing, and tree routing is constructed by a 
breadth-first spanning algorithm. The average base 
network latency as well as the average minimum base 
network latency is compared. The average minimum base 
network latency is obtained by choosing “the best tree” 
from 16 tree configurations for each related routing 
scheme. Each of the 16 trees is constructed by using a 
different node as the root. Since the tree is constructed 
during initialization, an interconnection network can select 
the one that delivers the lowest average base network 
latency. 

Shortest Path TRLIN Autonet Tree 
2 31 2 6 1  311  341 
2 31 2 5 3  2 9 0  3 1 2  

I 2.31 I 2.87 I 3.19 
I 2.26 I 2.71 I 3.04 

Table 2. Average base network latency and average 
minimum base network latency over all the possible 
routes from 50 randomly generated networks in terms 
of number of hops. Each network is composed of 16 
nodes and 32 links. 

The analysis results in Table 2 show that TRAIN 
performs better than the Autonet routing and the tree 
routing. The difference of the performance between 
TRAIN and the shortest path routing is also limited. The 
adaptive trail routing is not included here due to the 
complexity of generating the deadlock-free routing table 
automatically. 

Table 3 shows the analysis results from 50 randomly 
generated networks which are composed of 16 nodes and 
26 links. Again, TRAIN performs consistently better than 
the Autonet routing and the tree routing. Note that the 
average base network latency and the average minimum 
base network latency are higher than those in Table 2. 
This is due to the fact that with fewer links, a packet needs 
to traverse more hops on the average. 

Table 3. Average base network latency and average 
minimum base network latency over all the possible 
routes from 50 randomly generated networks in terms 
of number of hops. The network is composed of 16 
nodes and 26 links. 

4.2. Simulation for Loaded Networks 
The analysis of the base network latency in Section 

4.1 is only valid when the network has no traffic. In order 
to evaluate the various routing schemes for networks under 
different traffic loads, a simulator has been developed. 
The simulator is even-driven and implemented by C 
language. The shortest path routing scheme is not included 
in the simulation since deadlock may occur in the network. 

The simulations are based on the following properties: 
1) packet size is fixed at 32 bytes. 2) during each cycle 
there is an equal probability of generating a packet at each 
of the inputs of the network. 3) packet destinations are 
uniformly distributed over the outputs of the network. We 
assume that the packet header is 4 bytes. The links are 2- 
byte wide in each direction. Virtual cut-through switching 
is assumed. There are two virtual channels at each input 
port to buffer the arrived packets, and the capacity of each 
virtual channel is 64 bytes [ 3 ] .  In addition, each network 
node consists of a computing element and an associated 
switch. 

The latency for a packet to traverse a switch is as 
follows. It takes a cycle for two bytes of packet data to be 
transmitted across the link between two switches. Each 
input port spends a cycle to buffer the arriving packet. 
The routing decision takes a cycle. One more cycle is then 
spent on arbitration of the crossbar. After that, packet data 
cross the crossbar to the output port, which takes another 



cycle. Note that a packet may stay in the input buffer for 
longer if there is contention at the crossbar or the destined 
output is blocked. 

The performance measures used in our simulation 
include the average latency and the normalized 
throughput. The latency is the number of cycles that 
elapses from when the first two bytes of a packet generated 
at an input to when it leaves the network. The normalized 
throughput is the average number of bytes received by 
each output per clock cycle. Each simulation run is 
terminated after 5,000 packets have arrived at their 
destination outputs. Statistics are gathered only after 
2,000 packets in order to remove start-up effects. 

Figure 9 shows the simulation results for the example 
network described in Section 2. This particular network 
has 9 nodes and 13 links. The performance of TRAIN and 
ATR is better than that of the Autonet routing with a 
higher maximum throughput and a lower average latency. 
However, their performance difference is not significant. 
With the tree routing, the network reaches saturation at a 
much lower throughput and the latency is significantly 
higher. 
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Figure 9: Simulation for the example network in 
Figure 2. Average latency vs. normalized 
throughput. 

The simulation results in Figure 9 are only for a 
particular case. To further study the performance 
comparison for the various routing schemes, we have also 
simulated tens of network topologies generated randomly. 
Due to the limited space, only three cases which represent 
typical results are presented in the following. The adaptive 
trail routing is not included in these cases due to, again, 
the complexity of generating the deadlock-free routing 
table automatically. The three cases have: 

1) 
2 )  
3) 

16 nodes and 32 links 
16 nodes and 26 links 
32 nodes and 64 links 

The simulation results for case 1 are shown in Figure 
10. The tree routing again has the worst performance. 
However, the performance of the TRAIN scheme 
outperforms the Autonet routing significantly. The reason 
for this is that the extra shortcut links between different 
levels of the tree provide the network with higher 
bandwidth and lower latency. Although this is only a 
particular case for such a network size. From the 
simulation for other random topologies with the same size, 
we have found that the conclusions hold. 

-TRAIN 
. .o.. Autonet - 4- rrce 

0 0 4  0 5  
0 1  Throughpup 

Figure 10: Simulation for a randomly generated 
network composed of 16 nodes and 32 links. 
Average latency vs. normalized throughput. 

Figure 11 shows the simulation results for case 2. 
This case has the same number of nodes but fewer links, 
and hence each routing scheme has a lower maximum 
throughput and a higher latency than case 1, respectively. 
The tree routing again has a poor performance. The 
TRAIN scheme still outperforms the Autonet scheme 
significantly 

0 '  
0 0. I 0.2 0.3 0.4 

Throughput 

Figure 11: Simulation for a randomly generated 
network composed of 16 nodes and 26 links. 

The performance impact of increasing the network 
size is shown in Figure 12. The case 3 network simulated 
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has 32 nodes and 64 links. Compared to the results in 
Figures 10 and 11 ,  each routing scheme has a lower 
maximum throughput and a higher latency, respectively. 
This is due to higher contention in the network. The 
TRAIN scheme again performs better than both the 
Autonet and tree schemes consistently. 

5. Summary and Conclusions 
Interconnection !networks with irregular topologies are 

suitable for worksfation clusters since they provide 
incremental sca1abilii.y. Deadlock prevention for irregular 
networks, however, ; s more difficult than the counterpart 
for regular networks such as mesh, torus, and hypercube. 
We have proposed a cost-effective deadlock-free routing 
scheme called TRAIN for irregular networks. With 
TRAIN routing, the switch uses an algorithmic routing 
function to decide the next hop adaptively for the arriving 
packet. No routing [:able is required in the switch for the 
TRAIN scheme, and. hence the switch can be small and 
fast. It is expected that a TRAIN switch can be 
implemented in a sin;;le VLSI chip. 

To evaluate the effectiveness of the TRAIN routing 
scheme, we have analyzed the network latency for TRAIN 
and other routing schemes in unloaded networks. Our 
analysis results sh’aw that TRAIN outperforms the 
previously proposed routing schemes and is close to the 
optimal shortest path scheme. We have also implemented 
an event-driven simulator to evaluate the TRAIN routing 
scheme in loaded networks. Many irregular networks with 
different network siz,es have been simulated. Our results 
show that TRAIN outperforms other routing schemes 
consistently. 
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Figure 12: Simulation for a randomly generated 
network composed of 32 nodes and 64 links. 
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