
A Deadlock-Free Routing Scheme for Interconnection Networks
with Irregular Topologies
Hsin-Chou Chi and Chih-Tsung Tang

Department of Computer Science and Information Engineering
National Dong Hwa University

Hualien, Taiwan, R.O.C.

Abstract
Interconnection networks with irregular topologies (or
irregular networks) are ideal communication subsystems
for workstation clusters owing to their incremental
scalability. While many deadlock-free routing schemes
have been proposed for regular networks such as mesh,
torus, and hypercube, they cannot be applied in irregular
networks. This paper presents a cost-effective routing
architecture, called TRAIN, to solve the routing problem
with irregular networks. We show that TRAIN is a
deadlock-free scheme. Furthermore, unlike many other
routing schemes proposed previously for irregular
networks, TRAIN does not require a routing table in the
switch. Due to this feature, a TRAIN switch is small and
the routing decision can be made rapidly. In order to
evaluate the effectiveness of our routing scheme, analysis
and event-driven simulation have been performed for
various irregular networks. Our results show that TRAIN
outperforms other schemes with a higher maximum
throughput and lower average latency consistently.

1. Introduction
Multiprocessors and multicomputers achieve high

performance using interconnection networks that provide
high-bandwidth low-latency interprocessor communication.
Point-to-point interconnection networks composed of
communication switches have been employed in many
experimental and commercial systems. Most of these
networks use regular topologies, such as mesh, torus, and
hypercube, to connect their switch components. With a
regular topology, an interconnection network can be
compactly implemented in a circuit board or chassis for
massively parallel processors. Many routing algorithms
have been developed for regular networks to provide
efficient transmission of packets and guarantee deadlock
freedom [1, 2, 4, 5 , 6, 81.

Lately, workstation clusters have emerged to become
a cost-effective approach to build a multiprocessing
platform. Traditional local area networks can be used to
support inter-node traffic for such parallel systems.
However, their performance is not maximized due to the
limited bandwidth. Although it is possible to use regular
networks originally designed for massively parallel

processors, they are not incrementally scalable and cost-
effective for workstation clusters. In comparison, an
interconnection network with irregular topologies matches
the cluster environment better. Such irregular networks
consist of many small switches and can scale up the
communication performance by adding more switches.

Designing an efficient routing scheme for irregular
networks is not trivial. A well designed routing scheme
for irregular networks should be deadlock-free and provide
high performance for various network topologies.
Furthermore, the routing scheme should be efficiently
implemented in a communication switch. Several routing
architectures have been proposed for irregular networks in
recent years [9, 101. Although these schemes are capable
of routing packets in various network topologies and
achieve deadlock freedom, they typically rely on a large
hardware routing table in the communication switch. With
such routing schemes, the size of the routing table in the
switch grows proportionally as the size of the network
increases. Hence, the implementation of the
communication switch becomes relatively complex.
Furthermore, packets traversing the switch suffer from
long forwarding latency.

We propose a cost-effective routing architecture
without a routing table in the switch for irregular networks.
The routing scheme is deadlock-free and is adaptive to
dynamic network traffic conditions. Since there is no
routing table in the switch, the routing decision can be
made rapidly and thus provides low latency for packets
traversing the network. Virtual cut-through switching is
assumed in our interconnection network [7]. The routing
architecture is based on a spanning tree which is a subset
of the network, and hence is called TRAIN (Tree-based
Routing Architecture for Irregular Networks). TRAIN
uses the links of the spanning tree to form a route which
can be followed by a packet from any source node to any
destination node. The other links than those in the tree can
be used as shortcuts to reduce the number of hops a packet
has to traverse, which significantly improve the network
performance.

The next section describes the problem of designing a
routing system for irregular networks. Previous research
work on this issue is surveyed. In Section 3 , the TRAIN
routing scheme for irregular networks is proposed. It is

88
0-8186-8227-2/97 $10.00 0 1997 IEEE

shown that the routing algorithm is deadlock-free and can
be efficiently implerpented in a switch. The performance
of TRAIN is evalualed in Section 4. It is compared with
other routing schernes based on analysis for unloaded
networks and event-driven simulation for loaded networks.
Section 5 concludes this work with a summary.

2. The Routing Problem for Irregular Networks
An irregular network consists of an arbitrary number

of nodes and has an irregular topology. Figure 1 shows an
example of an irregular network consisting of 9 nodes [9].
Each node includes (3 computing element and an associated
communication switch in the network. We assume that a
communication swi [ch connects to only one computing
element in the rest (of the paper. In fact, it is possible to
connect more than one computing element to a
communication switzh.

Figure 1: An irregular network.

Figure 2 shows a workstation cluster with an irregular
network from Figure 1. A collection of communication
switches constitute the interconnection network. Each
node in the network has a computing element associated
with a communication switch. Note that some ports of the
switches are left open in this example. These free ports
can be used to isonnect to other switches or more
computing elements. The efficient design and
implementation of the communication switch and its
routing function have a significant impact on the
performance of the interconnection network.

A generic architecture of the communication switch is
shown in Figure 3 [11, 121. Each port in the switch is
associated with a pair of input and output channels. The
link connected to a port in the switch leads to either a
computing element or a communication switch. A
communication switch often includes buffers at their input
ports for storing incoming packets that cannot be
forwarded immediately due to output port contention or
blocking. The crossbar in the switch provides unblocking
paths between the input ports and output ports. A
hardware routing decision module determines which
output port an arriking packet will be destined to based on
the information in the packet header.

89

Figure 2: An interconnection network corresponding
to the example topology in Figure 1. Each computing
element is associated with a communication switch in a
node.

Figure 3: A generic architecture of a communication
switch with input buffers.

Without a careful design for the routing scheme,
deadlock may happen to an interconnection network.
When deadlock occurs, a set of messages are blocked
forever in the network [4, 5, 81. Many deadlock-free
routing algorithms have been proposed for regular
networks such as mesh, torus, and hypercube. Most of
these routing algorithms achieve deadlock freedom by
avoiding the possibility of deadlock situations. Such
deadlock avoidance is typically accomplished by removing
channel dependency cycles for the network 14, 51.
Deadlock avoidance can be implemented in an algorithmic
routing function in the communication switch. A well
designed routing algorithm should achieve deadlock
freedom without significantly reducing the network
performance.

While many effective routing schemes have been
proposed for regular networks, there have been very few
counterparts for irregular networks. Although deadlock
detection and recovery can be used to resolve the problem,
the complexity of the communication switch based on that
is significantly increased. Hence, most practical designs
proposed recently for deadlock-free routing in irregular
networks rely on deadlock avoidance.

The DEC Autonet project has proposed the
up*/down* routing algorithm for their network [101.
Autonet is a self-configured, switch-based local area
network. In an existing network, a spanning tree is

constructed by a distributed algorithm and each node is
assigned an ID during initialization. Each link in the
spanning tree is assigned a direction with “up” indicating
“toward the root.” A link leading to a parent node in the
tree is in the “up” direction. A link leading to a node with
a smaller ID at the same level is also in the “up” direction.
The basic idea of the up*/down* routing is that every
packet has to be routed for zero or more hops in the “up”
direction, and then for zero or more hops in the “down”
direction. A legal route never uses a link in the “up”
direction after it has been in the “down” direction. Hence,
channel dependency cycle is prohibited and deadlock
freedom is achieved.

Note that in Autonet the links connecting nodes at
different levels in the tree do not participate in routing
packets, The bandwidth of these links is thus wasted. In
Autonet, each packet follows the shortest one of all the
legal paths, and this is implemented based on a routing
table in each switch. Since each switch has an associated
routing table, and searching the table is part of the routing
function in the switch, the complexity of the switch is
relatively high.

Adaptive trail routing is another scheme proposed for
irregular networks [9]. The routing algorithm is based on
two unidirectional adaptive trails constructed from two
opposite unidirectional Eulerian trails. The links not in the
two Eulerian trails can be used as shortcuts as long as they
do not cause deadlock. The Eulerian trails are determined
based on some heuristics during initialization. However,
not every network topology has such Eulerian trails.
Furthermore, like Autonet routing, the switch for adaptive
trail routing requires a routing table, which increases the
switch complexity.

3. A Tree-based Routing Architecture for Irregular
Networks

Designing a deadlock-free routing scheme for
irregular networks is more complex than for regular
networks. As discussed in Section 2, Autonet routing and
adaptive trail routing have been proposed to solve the
problem, Although these two schemes are deadlock-free,
they require a routing table built in the switch. As the
network grows, the size of the routing table increases
significantly. In this section, we propose a tree-based
routing scheme which requires no routing table in the
switch. This routing scheme is called TRAIN (Tree-based
Routing Architecture for Irregular Networks).

3.1. TRAIN Routing
TRAIN is a routing scheme similar to the Autonet

routing in that it also uses a subset of the network to
construct a tree. A packet sets out from the source node
and follows the tree structure to reach any other node in

the tree. With TRAIN, however, those links not in the tree
can also be used for packet transmission. These links are
called shortcut links or simply shortcuts. The basic idea of
TRAIN is that a packet arriving in a switch takes
advantage of the shortcuts if they provide a shorter route to
the destination node than the “planned” route. A planned
route is the one that follows the tree structure. These
shortcuts help reduce the number of hops a packet has to
traverse from the source node to the destination node. In
addition, more bandwidth is provided in the network and
the traffic congestion in the area near the root of the tree is
mitigated.

When a packet arrives in a switch, the routing decision
module of the switch checks if there is a shortcut from
there leading to a switch “closer” to the destination node.
If such a shortcut exists, a packet is routed to the
neighboring switch the shortcut leads to. If such a shortcut
does not exist or is currently blocked, the packet simply
continues to follow the planned tree route. Note that a
packet may utilize shortcuts more than once along the
route from the source node to the destination node. A key
to the effectiveness of the TRAIN scheme is that distance
calculation between two nodes should be simple. Such a
distance calculation function should be efficiently
implemented in an algorithmic hardware and no routing
table is needed in the switch. We have developed a
distance calculation algorithm which can be used in
TRAIN.

n
121 - I Z O + loo 4 ooo- 200- 220

Figure 4: An example network with TRAIN. A packet
arrives in node 120 takes the shortcut leading to node
200.

Figure 4 shows an example network with TRAIN.
The number beside each node is the node ID used for
distance calculation. The labeling method is as follows.
The root node is labeled 00 ... 0. The tree is not necessarily
a binary tree. The children of the root are labeled 10 ... 0,
20 ... 0, and so on. From source node 121 to destination
node 220, for instance, the planned tree route takes five
hops. However, when the packet arrives in node 120, it

90

finds that the shortcut leading to node 200 provides a
shorter route. Hence the eventual distance that the packet
traverses from node 1 21 to node 220 is reduced from 5 to
3. Note that in order for the routing decision module to
work, a switch is required to store the neighboring nodes’
IDS the shortcuts lead to. This information can be set up
during initialization.

3.2. Distance Calculation
Distance calculation between two nodes is critical to

the performance of the TRAIN scheme. Our solution to
this problem is shown In Figure 5 , taking the example from
Figure 4. The algorithm is described in the following:

Algorithm Distance-Calculation:
Step 1: From the two digit strings of two nodes’

IDS, remove the common prefix string
from the two node IDS.

Step 2: The distance between two nodes is
exactly the total number of non-zero
digits le Ft in the two strings.

In the example in Figure 5, for the case on the left there is
no common prefix string and hence the distance from node
100 to node 220 is 3 since there are three non-zero digits.
The distance from m d e 200 to node 220 is 1 since the
common prefix string “2” is deleted and only one non-zero
digit is left.

1 0 0 xo 0

2 2 0 2 2 0

3 1

Figure 5: Distance calculation example from Figure 4.
For the case on the left, there are no common prefix
digits and so the distance from node 100 to node 220 is
3 since there are three non-zero digits. The distance
from node 200 to node 220 is 1 since the common
prefix string “2” is deleted and only one non-zero digit
is left.

The TRAIN algorithm can be described in the

Algorithm TUAIiV-Routing:

Step I : For an arriving packet, calculate the
possible distance from the current node
to the destination node based on the
destinaiion node ID of the packet and
the stored IDS of the neighboring nodes.

Step 2: If any unblocked shortcut provides a
shorter route than the tree route, pick

following algorithm:

the most profitable unblocked shortcut
and route the packet to the neighboring
node this shortcut leads to.

Step 3: If all the profitable shortcuts are blocked
or there is no profitable shortcut from
the current node, route the packet to the
neighboring node along the tree route.

Step 4: If all the profitable shortcuts and the tree
link are blocked in the current cycle,
wait for the next cycle and start from
Step 2 again.

In the above algorithm, profitable shortcuts are those
shortcut links that can bring the packet closer to the
destination.

As mentioned above, each switch can be associated
with one or more computing elements. If there is only one
computing element coupled with each switch, we can
assign a unique node ID for both of them. If there are two
or more computing elements connected to a switch, we can
treat the computing elements and the switch as
independent network nodes and give them different node
IDS. The TRAIN scheme can be applied in the above two
types of configuration. Figure 6 shows the TRAIN
configuration of the interconnection network from the
example in Figure 2. Note that six links are used as
shortcuts.

TreeLink -
Shortcut Link - - - - - -

Luwl 1

kwl2

L u v d 3

Figure 6: The TRAIN configuration of the
interconnection network from the example in Figure 2.
Six links are used as shortcuts.

3.3. Deadlock Freedom
Virtual cut-

through switching is used in TRAIN and it is part of the
mechanism to prevent deadlock. Virtual cut-through is a
switching technique similar to the popular wormhole
switching in that a packet can start to forward to the next
node if the packet header has arrived and the destined
output port is decided. However, virtual cut-through
switching requires the next switch to have sufficient buffer
space to store the packet. When a packet is blocked at the

The TRAIN scheme is deadlock-free.

91

head, the rest of the packet will keep moving forward and
stay in the switch where blocking occurs. Although
virtual cut-through switching requires more buffer space
than wormhole switching, it is feasible to implement a
single-chip switch that can accommodate several whole
packets with current VLSI technology. Furthermore, with
virtual cut-through switching, no packets can be blocked
in place across several nodes waiting for transmission.
This helps reduce network contention.

The mechanism for deadlock prevention is simple in
TRAIN. Figure 7 shows why deadlock cannot happen in
TRAIN. Since there exists no cycle in any tree, at least a
shortcut link is required to form a channel dependency
cycle. Suppose such a cycle exists and the shortcut link is
part of the dependency cycle in the network. At node B,
packets coming from node A will never cross the shortcut
and go to node D. The reason for this is that when a
packet is “going down” (away from the root) in the tree,
the destination node must belong to the offspring of the
current node (node B in this case). Hence the packet will
never go to another tree branch. On the other hand, at
node B, packets coming from node C can choose to cross
the shortcut or go up to node A, depending on their
destination. In the TRAIN scheme, a shortcut leading to a
shorter route has a higher priority than the tree link toward
the root. However, when the shortcut is blocked, the
packet follows the tree link adaptively. Furthermore, for
the packets arriving in node B from yet another shortcut,
they can also adaptively choose to follow the tree link if
the shortcut leading to node D is blocked. A shortcut link
thus can never become part of a channel dependency cycle,
and deadlock freedom is guaranteed. Note that if
wormhole switching is used, deadlock may occur in a
network with a routing scheme like TRAIN. The reason
for this is that the header of a packet may have crossed the
shortcut and then find that it is blocked ahead.

to -I

Avg. Latency
Varianceof
Utilization

h Shortest TRAIN Autonet Tree ATR
Path
1.75 1.78 1.97 2.39 1 79
4.80 6.58 10.86 25.42 18 29 Y

\ r -

Figure 7: Deadlock prevention in TRAIN.

4. Performance Evaluation
In order to evaluate the effectiveness of the TRAIN

scheme, we have analyzed the latency for an average
packet in various network topologies. It is assumed that

92

shown in Figure 8. The horizontal dimension in the graph
is the count of usage of the links, which is obtained by
counting the times each link is “used” from all the possible
unique routes in the network. The vertical dimension is
the number of link:; which have a certain count of link
usage. Figure 8 shows that the curve indicated by the solid
line exhibits better fairness than the curve indicated by the
dotted line since the former has a lower variance. The
variance of link utilization for the above five schemes is
also presented in Table 1. TRAIN has the best variance
other than the shortest path scheme in this case.

Avg Latemy
Avg Min

(<I““, “iU,aCL

Figure 8: DistribLtion of link utilization. Number of
links vs. count of usage. The curve indicated by the
solid line has a lower variance than the one indicated
by the dotted line.

The analysis results in Table 1 are obtained based on
an example network only, and the conclusions may not
hold for other networks. In order to further investigate the
performance of these routing schemes, we have
implemented a program to analyze them from many
randomly generated networks. Table 2 shows the results
from 50 randomly generated networks which are
composed of 16 nodes and 32 links. The tree for TRAIN,
Autonet routing, and tree routing is constructed by a
breadth-first spanning algorithm. The average base
network latency as well as the average minimum base
network latency is compared. The average minimum base
network latency is obtained by choosing “the best tree”
from 16 tree configurations for each related routing
scheme. Each of the 16 trees is constructed by using a
different node as the root. Since the tree is constructed
during initialization, an interconnection network can select
the one that delivers the lowest average base network
latency.

Shortest Path TRLIN Autonet Tree
2 31 2 6 1 311 341
2 31 2 5 3 2 9 0 3 1 2

I 2.31 I 2.87 I 3.19
I 2.26 I 2.71 I 3.04

Table 2. Average base network latency and average
minimum base network latency over all the possible
routes from 50 randomly generated networks in terms
of number of hops. Each network is composed of 16
nodes and 32 links.

The analysis results in Table 2 show that TRAIN
performs better than the Autonet routing and the tree
routing. The difference of the performance between
TRAIN and the shortest path routing is also limited. The
adaptive trail routing is not included here due to the
complexity of generating the deadlock-free routing table
automatically.

Table 3 shows the analysis results from 50 randomly
generated networks which are composed of 16 nodes and
26 links. Again, TRAIN performs consistently better than
the Autonet routing and the tree routing. Note that the
average base network latency and the average minimum
base network latency are higher than those in Table 2.
This is due to the fact that with fewer links, a packet needs
to traverse more hops on the average.

Table 3. Average base network latency and average
minimum base network latency over all the possible
routes from 50 randomly generated networks in terms
of number of hops. The network is composed of 16
nodes and 26 links.

4.2. Simulation for Loaded Networks
The analysis of the base network latency in Section

4.1 is only valid when the network has no traffic. In order
to evaluate the various routing schemes for networks under
different traffic loads, a simulator has been developed.
The simulator is even-driven and implemented by C
language. The shortest path routing scheme is not included
in the simulation since deadlock may occur in the network.

The simulations are based on the following properties:
1) packet size is fixed at 32 bytes. 2) during each cycle
there is an equal probability of generating a packet at each
of the inputs of the network. 3) packet destinations are
uniformly distributed over the outputs of the network. We
assume that the packet header is 4 bytes. The links are 2-
byte wide in each direction. Virtual cut-through switching
is assumed. There are two virtual channels at each input
port to buffer the arrived packets, and the capacity of each
virtual channel is 64 bytes [3] . In addition, each network
node consists of a computing element and an associated
switch.

The latency for a packet to traverse a switch is as
follows. It takes a cycle for two bytes of packet data to be
transmitted across the link between two switches. Each
input port spends a cycle to buffer the arriving packet.
The routing decision takes a cycle. One more cycle is then
spent on arbitration of the crossbar. After that, packet data
cross the crossbar to the output port, which takes another

cycle. Note that a packet may stay in the input buffer for
longer if there is contention at the crossbar or the destined
output is blocked.

The performance measures used in our simulation
include the average latency and the normalized
throughput. The latency is the number of cycles that
elapses from when the first two bytes of a packet generated
at an input to when it leaves the network. The normalized
throughput is the average number of bytes received by
each output per clock cycle. Each simulation run is
terminated after 5,000 packets have arrived at their
destination outputs. Statistics are gathered only after
2,000 packets in order to remove start-up effects.

Figure 9 shows the simulation results for the example
network described in Section 2. This particular network
has 9 nodes and 13 links. The performance of TRAIN and
ATR is better than that of the Autonet routing with a
higher maximum throughput and a lower average latency.
However, their performance difference is not significant.
With the tree routing, the network reaches saturation at a
much lower throughput and the latency is significantly
higher.

6 0 -

50

L

1
"40

-TRAIN
..*..Am
t A U i O l l ' l

t T W

.

- d I
I
8 -TRAIN
I
I . .9 . . Autonet

I
I --A- Tree

-

n n i n i n 3 04 0 5 0 6
Thmuyhpul

Figure 9: Simulation for the example network in
Figure 2. Average latency vs. normalized
throughput.

The simulation results in Figure 9 are only for a
particular case. To further study the performance
comparison for the various routing schemes, we have also
simulated tens of network topologies generated randomly.
Due to the limited space, only three cases which represent
typical results are presented in the following. The adaptive
trail routing is not included in these cases due to, again,
the complexity of generating the deadlock-free routing
table automatically. The three cases have:

1)
2)
3)

16 nodes and 32 links
16 nodes and 26 links
32 nodes and 64 links

The simulation results for case 1 are shown in Figure
10. The tree routing again has the worst performance.
However, the performance of the TRAIN scheme
outperforms the Autonet routing significantly. The reason
for this is that the extra shortcut links between different
levels of the tree provide the network with higher
bandwidth and lower latency. Although this is only a
particular case for such a network size. From the
simulation for other random topologies with the same size,
we have found that the conclusions hold.

-TRAIN
. .o.. Autonet - 4- rrce

0 0 4 0 5
0 1 Throughpup

Figure 10: Simulation for a randomly generated
network composed of 16 nodes and 32 links.
Average latency vs. normalized throughput.

Figure 11 shows the simulation results for case 2.
This case has the same number of nodes but fewer links,
and hence each routing scheme has a lower maximum
throughput and a higher latency than case 1, respectively.
The tree routing again has a poor performance. The
TRAIN scheme still outperforms the Autonet scheme
significantly

0 '
0 0. I 0.2 0.3 0.4

Throughput

Figure 11: Simulation for a randomly generated
network composed of 16 nodes and 26 links.

The performance impact of increasing the network
size is shown in Figure 12. The case 3 network simulated

94

has 32 nodes and 64 links. Compared to the results in
Figures 10 and 11 , each routing scheme has a lower
maximum throughput and a higher latency, respectively.
This is due to higher contention in the network. The
TRAIN scheme again performs better than both the
Autonet and tree schemes consistently.

5. Summary and Conclusions
Interconnection !networks with irregular topologies are

suitable for worksfation clusters since they provide
incremental sca1abilii.y. Deadlock prevention for irregular
networks, however, ; s more difficult than the counterpart
for regular networks such as mesh, torus, and hypercube.
We have proposed a cost-effective deadlock-free routing
scheme called TRAIN for irregular networks. With
TRAIN routing, the switch uses an algorithmic routing
function to decide the next hop adaptively for the arriving
packet. No routing [:able is required in the switch for the
TRAIN scheme, and. hence the switch can be small and
fast. It is expected that a TRAIN switch can be
implemented in a sin;;le VLSI chip.

To evaluate the effectiveness of the TRAIN routing
scheme, we have analyzed the network latency for TRAIN
and other routing schemes in unloaded networks. Our
analysis results sh’aw that TRAIN outperforms the
previously proposed routing schemes and is close to the
optimal shortest path scheme. We have also implemented
an event-driven simulator to evaluate the TRAIN routing
scheme in loaded networks. Many irregular networks with
different network siz,es have been simulated. Our results
show that TRAIN outperforms other routing schemes
consistently.

120

IM

L
a a0
1

n M)

Y

40

20

I
I

f
I

I
I
I

+-TRAIN
. . . AuIoNct

- *- Tree

I

0 11 3 Thhrouzhpui O 2

Figure 12: Simulation for a randomly generated
network composed of 32 nodes and 64 links.

References

1. R. V. Boppana and S. Chalasani, “A Comparison of
Adaptive Wormhole Routing Algorithms,” Proc. Int’l

2 .

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

Symp. on Computer Architecture, pp. 35 1-360, May
1993.

A. A. Chien and J. H. Kim, “Planar-Adaptive
Routing: Low-Cost Adaptive Networks for
Multiprocessors,” Journal of ACM, pp. 91-123,
January 1995.

W. J. Dally, “Virtual Channel Flow Control,” IEEE
Trans. on Computers, vol. 3, pp. 194-205, March
1992.

W. J. Dally and C. L. Seitz, “Deadlock-Free Message
Routing in Multiprocessor Interconnection
Networks,” IEEE Trans. on Computers, vol. 36, no. 5,
pp. 547-553, May 1987.

J. Duato, “A New Theory of Deadlock-Free Adaptive
Routing in Wormhole Networks,” IEEE Trans. on
Parallel and Distributed Systems, vol. 4, no. 12,
November 1993.

C. J. Glass and L. M. Ni, “The Turn Model for
Adaptive Routing,” Proc. Int’l. Symp. on Computer
Architecture, pp. 278-286, May 1992.

P. Kermani and L. Kleinrock, “Virtual Cut-Through:
A New Computer Communication Switching
Technique,” Computer Networks, vol. 3, pp.267-286,
1979.

L. M. Ni and P. K. McKinley, “A Survey of
Wormhole Routing Techniques in Direct Networks,”
IEEE on Computers, vol. 26, pp. 62-76, February
1993.

W. Qiao and L. M. Ni, “Adaptive Routing in
Irregular Networks Using Cut-Through Switches,”
Proc. Int’l Con$ on Parallel Processing, August
1996.

M. D. Schroeder et al., “Autonet: a High-speed, Self-
Configuring Local Area Network Using Point-to-
Point Links,” SRC Research Report 59, DEC, April
1990.

Y. Tamir and G. Frazier, “High-Performance Multi-
Queue Buffers for VLSI Communication Switches,”
Proc. Int’l. Symp. on Computer Architecture, pp.
343-354, 1988.

Y. Tamir and H. C. Chi, “Symmetric Crossbar
Arbiters for VLSI Communication Switches,” IEEE
Trans. on Parallel and Distributed Systems, vol. 4,
no. 1, pp. 13-27, January 1993.

95

