SYNOPSYS

Before you run any synopsys product, you need to source synopsys. In your directory where you want to run synopsys, type the following command:
% source /net/ictools/csh/synopsys.csh (if you are using c shell)
If you are using synopsys to running a *test bench*, see Part 1.
If you are using synopsys for the *synthesis*, see Part 2.

Part 1: Using synopsys running a test bench

At this point, you have two vhdl files, one is your behavior file and the other is your test bench file. For instance, CNT_BHV.vhd and TB_CNT_BHV.vhd if we using a counter as a sample. Follow the steps listed:

- 1. vhdlan CNT_BHV.vhd
- 2. vhdlan TB_CNT_BHV.vhd
- 3. vcs -debug_all CFG_TB_CNT_BHV
- 4. **./simv**
- 5. dve &

After the last step, you should see GUI interface, then follow the instructions here:

- 1) Simulator (Menu Option)
 - a) Setup
 - i) Simulator Executable Browse
 - (1) Find and Select simv
 - ii) Simulator Arguments
 - (1) Type -ucligui
 - iii) Click OK
- 2) Select wanted signals, usually all of them (should be second panel in GUI, ctrl click to select multiple)
 - a) Right click
 - i) Add To Waves
 - (1) New Wave View
- 3) Simulator (Menu Option)
 - a) Start (F5 works also)

Part 2: Using synopsys running a synthesis

You need to configure your .synopsys_dc.setup before you run design_analyzor.

Place the **.synopsys_dc.setup** file in your home directory. The template is as shown below for 65nm:

set company "Washington State University, EECS"

set search_path "\$search_path /net/ictools/pdk/CMOS065/CORE65LPSVT_SNPS-AVT-CDS_4.1/libs /net/ictools/pdk/CMOS065/CORE65LPSVT_SNPS-AVT-CDS_4.1/PLIB" set physical_library "CORE65LPSVT.pdb" set link_library "* CORE65LPSVT_nom_1.00V_25C.db" set target_library "CORE65LPSVT_nom_1.00V_25C.db" set symbol_library "CORE65LPSVT.sdb"

After you setup your configure file, type command **design_vision &**.

Then following steps needs to be done: (ASSUMES YOU HAVE A SIGNAL NAMED "clk"!!!!!)

- 1) File
 - 1. Read design (open .vhd file)
 - 1. Click file (ctrl click for multiple files)
- 2) Command Line
 - 1. elaborate <name>
 - 2. current_design <name>
 - 3. link
 - 4. **uniquify**
 - 5. **create_clock –name "myclk" –period 10 {clk}** (creates clk signal with period of 10 and attaches itself to the clk pin)
 - create_clock -name "vclk" -period 10 (creates virtual clk signal with period of 10; MAY OR MAY NOT be needed)
 - 7. set_input_delay -max 0 -clock myclk [remove_from_collection [all_inputs] [get_ports clk]] (if report_timing and report_power don't work, you might need to add this line, synchronizes the data to clk, DON'T USE UNLESS THE REPORTS FAIL)
 - 8. compile -map_effort medium (low or high work also)
 - 9. **report_timing** (only shows worst case)
 - 10. report_timing -nworst 10 (shows the top 10 worst cases, 100 would show 100, etc.)
 - 11. **report_power** (shows total power)
 - 12. **report_power –flat** (shows power for each individual gate. WARNING: will take a LONG LONG LONG time to run this simulation)
 - 13. **report_power -hier** (shows power for each block, if there are blocks, else will just show total power)