
Homework Assignment 4

(Due Mar. 4th at the beginning of the class)

0. Preparation for homework 4
• Download the following file into your working directory.

o wget http://www.eecs.wsu.edu/~ee434/Homework/hw04.tar.gz
• Unzip it.

o tar xvzf hw04.tar.gz
• Source synopsys.sh

o source synopsys.sh

1. [Pseudo-nMOS, 20 points]
• Design a pseudo-nMOS inverter for the following design spec:

o Simulate the inverter with the following load cap and input signal
 Load cap: 10fF
 The fall & rise transition time of the input signal: 10ps

o Spec
 Rise time < 100ps
 Fall time < 100ps
 VOL < 100mV
 VOH > 900mV
 NML > 150mV
 NMH > 300mV

• [Submit]
o The size of the NMOS and PMOS transistors
o Rise time, fall time
o VIH, VIL, VOH, VOL, NML, NMH
o Average power for falling and rising transitions

(1) Let’s first satisfy the fall and rise time constraints.
• Wn=45nm, Wp=70nm: tf=288ps, tr=167ps.
• Wn=135nm, Wp=140nm: tf=103ps, tr=91.1ps.
• Wn=210nm, Wp=140nm: tf=53.1ps, tr=96.5ps (tr is too close to 100ps, so let’s

upsize Wp).
• Wn=210nm, Wp=210nm: tf=64.4ps, tr=59.4ps.

(2) DC characteristics
• Wn=210nm Wp=210nm: VOL>100mV (We should upsize the NMOS TR).
• Wn=840nm Wp=210nm: VOL=120mV
• Wn=1260nm Wp=210nm: VOL=97mV, VIH=575mV, VIL=300mV,

VOH=940mV => NML=203mV, NMH=365mV, pfall=218uW, prise=66.5uW

2. [Dynamic CMOS, 20 points]
• We design a three-input NAND gate using the dynamic CMOS design style.
• Open myNAND3_pex.cdl and see the netlist of the NAND gate. I drew a layout

for the NAND gate and extracted parasitic RC. myNAND3_pex.cdl includes all
the parasitic RC.

• Open myNAND3_simul.sp and see the netlist. It is used to simulate the NAND
gate.

• The followings show the layout and schematic of the NAND gate.

• Add four signal waveforms (CK, A, B, C) to simulate charge sharing.
o Load cap: 10fF
o CK: VDD → 0 → VDD
o When CK is VDD (before it goes down to 0), set A, B, and C to VDD so that

it can fully discharge the output capacitor and all the parasitic capacitors.
o Then, set A, B, and C to 0 before CK goes to 0.
o Then, CK goes to 0 and the gate will charge the output capacitor.
o Then, CK goes to VDD.
o Then, set C to VDD so that charge sharing can happen between the output

capacitor and the parasitic capacitor between MnC and MnB.
o Perform the same simulation, but set both B and C to VDD so that charge

sharing can happen among the output capacitor, the parasitic capacitors
between MnC and MnB and between MnB and MnA.

• [Submit]
o Vout when only C is set to VDD for Cout =10fF, 9fF, …, 1fF.

Waveform

Cout = 1fF ~ 10fF: Vout = 0.8V, 0.874V, 0.909V, 0.929V, 0.941V, 0.950V, …, 0.969V

• [Submit]
o Vout when both C and B are set to VDD for Cout =10fF, 9fF, …, 1fF.

Waveform

Cout = 1fF ~ 10fF: Vout = 0.633V, 0.734V, …, 0.933V

3. [Synthesis, 20 points]
• In this problem, we will synthesize a netlist for a few gates.
• Make sure you have the following files in your working directory.

o NangateOpenCellLibrary_typical_ecsm.db
o nand8.v

• Source synopsys.sh.
• Run Design Compiler (DC).

o design_vision –no_gui
• In DC, run the following commands.

o set link_library {NangateOpenCellLibrary_typical_ecsm.db}
o set target_library {NangateOpenCellLibrary_typical_ecsm.db}
o read_file -format verilog {nand8.v}
o compile -exact_map
o write -format verilog -output nand8_mapped.v
o exit

• The two “set” statements set up target libraries.
• “read_file” reads HDL source codes.
• “compile” compiles (synthesizes) the source codes.

• “write” writes the synthesized code into the file specified after “-output”.
• Open “nand8.v” and see the function of the module.
• Open “nand8_mapped.v” and see the function of the module. Are they equal?
• [Submit] Draw a schematic for the netlist of “nand8_mapped.v”.

• Implement a 20-input nand gate by modifying “nand8.v” and synthesize it.
• [Submit] Draw a schematic for the netlist of the synthesized 20-input nand gate.

Code:

 module myNAND20 (myIn, myOut);

 input [19:0] myIn;

 output [19:0] myOut;

 assign myOut = !(myIn[0] && myIn[1] && myIn[2] && myIn[3] && myIn[4] && myIn[5]
&& myIn[6] && myIn[7] && myIn[8] && myIn[9] && myIn[10] && myIn[11] && myIn[12]
&& myIn[13] && myIn[14] && myIn[15] && myIn[16] && myIn[17] && myIn[18] &&
myIn[19]);

 endmodule

• Implement a full adder and synthesize it.
o Primary inputs: A, B, CI
o Primary outputs: S, CO

o Use ^, &&, and || for XOR, logical AND, and logical OR operations in
Verilog.

o Use parentheses to prioritize the operations.
o Use two assignments, one for S and the other for CO.

• [Submit] Draw a schematic for the netlist of the synthesized full adder.

Code

 module myFA1 (A, B, Cin, S, CO);

 input A, B, Cin;

 output S, CO;

 assign S = A ^ B ^ Cin;

 assign CO = (A && B) || (B && Cin) || (Cin && A);

 endmodule

