Homework Assignment 3
 (Due Oct. 16, 4:15pm)

(1) [DC Analysis, 20 points] Draw a DC characteristic curve for the following circuit.

The resistance of the resistor is R and the threshold voltages of the two NFETs are V_{t}. Ignore the body-bias effect.

- Assume that V_{A} and V_{B} switch from 0 to $V_{D D}$ at the same time.
- Assume that the NFETs are properly sized, so the output voltage is almost 0 V when V_{A} and V_{B} are $V_{D D}$.
- Show the operations modes of the NFETs on the DC characteristic curve.
- Show some equations to find $V_{\text {out }}$ as a function of $V_{A}\left(=V_{B}\right), R, V_{D D}$, and V_{t}. You don't need to simplify the equations. Just show the equations.

Suppose $V_{A}=V_{B}=V_{1}$ and the node between V_{A} and V_{B} is V_{2}.
If $V_{1}<V_{t n}$,
B: $V_{G S}-V_{t n}=V_{1}-V_{t n}<0:$ OFF
A: $V_{G S}-V_{t n}=V_{1}-V_{2}-V_{t n}<0$ (because $V_{2} \geq 0$): OFF

If $V_{1}=V_{\text {tn }}+\delta$ where $\delta>0$ and δ is small,
B: $V_{G S}-V_{t n}=V_{1}-V_{t n}=\delta>0: O N$
$V_{D S}=V_{2}$, so if $V_{2}<\delta$, B is in linear mode, otherwise it is in saturation mode.
A: $V_{G S}-V_{t n}=V_{1}-V_{2}-V_{t n}=\delta-V_{2}$
If V_{2} is less than δ, A is turned on, otherwise A is turned off. If A is turned off, V_{2} will be discharged because B is always ON in this case. Thus, V_{2} goes down, then A is turned on again.
$V_{D S}=V_{\text {out }}-V_{2}$, which will be close to $V_{D D}$, so if A is turned on, it will be in saturation mode.

If $V_{1} \approx V_{D D}$,
B: $V_{G S}-V_{t n}=V_{1}-V_{t n}>0: \mathrm{ON}$
$V_{D S}=V_{2}$. B is fully turned on, so V_{2} will be much lower than $V_{1}-V_{t n}=V_{D D}-V_{t n}$ in this case, so B is in linear mode.

$$
\begin{aligned}
& \text { A: } V_{G S}-V_{t n}=V_{1}-V_{2}-V_{t n}>0: \mathrm{ON} \\
& \qquad V_{D S}=V_{\text {out }}-V_{2} \approx 0, \text { so } V_{D S}<V_{G S}-V_{t n}, \text { so A is ON and in linear mode. }
\end{aligned}
$$

(2) [DC Analysis, 20 points] The following shows the DC characteristic curve of an inverter INV (V_{1} is a constant). Draw a DC characteristic curve of a buffer consisting of two INVs.

The line in the middle is $V_{\text {out }}=-\frac{V_{D D}}{V_{D D}-2 V_{1}} V_{\text {in }}+\frac{V_{D D}\left(V_{D D}-V_{1}\right)}{V_{D D}-2 V_{1}}$. We solve the following equations.

$$
\begin{gathered}
-\frac{V_{D D}}{V_{D D}-2 V_{1}} V_{i n}+\frac{V_{D D}\left(V_{D D}-V_{1}\right)}{V_{D D}-2 V_{1}}=V_{1} \\
-\frac{V_{D D}}{V_{D D}-2 V_{1}} V_{i n}+\frac{V_{D D}\left(V_{D D}-V_{1}\right)}{V_{D D}-2 V_{1}}=V_{D D}-V_{1}
\end{gathered}
$$

From the first equation, we get $V_{i n}=V_{D D}-2 V_{1}+\frac{2 V_{1}{ }^{2}}{V_{D D}}$ and from the second equation, we get $V_{i n}=\frac{2 V_{1}\left(V_{D D}-V_{1}\right)}{V_{D D}}$. Thus, we get the following DC curve for the buffer.

(3) [Noise Analysis, $\mathbf{4 0}$ points]

The schematic shown above shows a circuit consisting of two inverters (INV1 and INV2). V_{1} and V_{2} are independent noise sources. The ranges of V_{1} and V_{2} are $[a, b]$ and [c, d], respectively ($\mathrm{a}, \mathrm{c}<0, \mathrm{~b}, \mathrm{~d}>0$). $V_{\text {out }}$ should be 0 V for input voltage 0 V and 1 V for input voltage 1V. Find the maximum value of $(25 b-15 c)$ and the minimum value of $(25 a-15 d)$ when Char1 is for INV1 and Char2 is for INV2.

For input $0 V$, the actual input to $I N V 1$ is $[a(V), b(V)]$ due to the noise. Suppose the output of INV1 is $e(V)$. Then, the actual input to INV2 becomes $[e+c(V), e+d(V)]$. Since $V_{\text {out }}$ should be 0 V in this case (because the primary input is 0 V), we should satisfy the following condition:

$$
e+c \geq 0.6(V)
$$

1) If $b \leq 0.2(V)$, e is 1 V , so $c \geq-0.4(V)$.
2) If $b>0.2(V), e=-\frac{5}{3} b+\frac{4}{3}(V)$, so $-\frac{5}{3} b+\frac{4}{3}+c \geq 0.6(V)$. After simplifying the inequality, we get $25 b-15 c \leq 11(V)$. Thus, the maximum value of $(25 b-15 c)$ is $11(V)$. Notice that $(b=0.2 V, c=-0.4 V)$ obtained from the first case results in the same maximum value.

Similarly, for input 1V, the actual input to INV1 is $[1+a(V), 1+b(V)]$. Suppose the output of INV1 is $f(V)$. Then, the actual input to INV2 becomes $[f+c(V), f+d(V)]$. Since $V_{\text {out }}$ should be 1 V in this case (because the primary input is 1 V), we should satisfy the following condition:

$$
f+d \leq 0.4(V)
$$

1) If $(1+a) \geq 0.8(V)$, f is 0 V , so $d \leq 0.4(V)$.
2) If $(1+a)<0.8(V), f=-\frac{5}{3}(1+a)+\frac{4}{3}(V)$, so $-\frac{5}{3}(1+a)+\frac{4}{3}+d \leq 0.4(V)$. After simplifying the inequality, we get $25 a-15 d \geq-11(V)$. Thus, the minimum value of $(25 a-15 d)$ is $-11(V)$. Notice that ($a=-0.2 \mathrm{~V}, d=0.4 \mathrm{~V}$) obtained from the first case results in the same minimum value.
