Homework Assignment 3 (Due Oct. 16, 4:15pm) (1) [DC Analysis, 20 points] Draw a DC characteristic curve for the following circuit. The resistance of the resistor is R and the threshold voltages of the two NFETs are V_t . Ignore the body-bias effect. - Assume that V_A and V_B switch from 0 to V_{DD} at the same time. - Assume that the NFETs are properly sized, so the output voltage is almost 0V when V_A and V_B are V_{DD} . - Show the operations modes of the NFETs on the DC characteristic curve. - Show some equations to find V_{out} as a function of $V_A (= V_B)$, R, V_{DD} , and V_t . You don't need to simplify the equations. Just show the equations. (2) [DC Analysis, 20 points] The following shows the DC characteristic curve of an inverter INV (V_1 is a constant). Draw a DC characteristic curve of a buffer consisting of two INVs. ## (3) [Noise Analysis, 40 points] The schematic shown above shows a circuit consisting of two inverters (INV1 and INV2). V_1 and V_2 are independent noise sources. The ranges of V_1 and V_2 are [a,b] and [c,d], respectively (a, c<0, b, d>0). V_{out} should be 0V for input voltage 0V and 1V for input voltage 1V. Find the maximum value of (25b-15c) and the minimum value of (25a-15d) when Char1 is for INV1 and Char2 is for INV2.