Homework Assignment 4 (Due Dec. 9, 11:59pm)

(1) **[Adder, 10 points]** Add the following three numbers using the carry select adder shown below. A=10101010, B=01010101, Cin=1 (Fill in the blank boxes).

(2) [Adder, 10 points] Add the following three numbers using the carry skip adder shown below. A=10101010, B=01010101, Cin=1 (Fill in the blank boxes).

(3) [Adder, 10 points] Add the following three numbers using the conditional sum adder shown below. A=11101110, B=01111001, Cin=1 (Fill in the blank boxes).

	<i>i</i> :	7	6	5	4	3	2	1	0	
	A_i :	1	1	1	0	1	1	1	0	
	B_i :	0	1	1	1	1	0	0	1	CI = 1
Step 1	$S_i^{\ 0}: CO_i^{\ 0}:$									$CI_0 = 1$
	S_i^1 :									
	CO_i^1 :									
Step 2	$S_i^{\ 0}: CO_i^{\ 0}:$									
	S_i^1 : CO_i^1 :									
Step 3	$S_i^{\ 0}: CO_i^{\ 0}:$									
	S_i^1 : CO_i^1 :									
Result										

(4) [Adder, 20 points] The delay of an AND (OR) gate is Δ and the delay of a two-level (sum-of-product) logic is 2Δ. We are designing a 1024-bit Kogge-Stone adder. Represent c₈₇ hierarchically using group-generated and group-propagated carries (g_{i:k}, p_{i:k}) and c₀ (primary carry-in), then calculate the delay to obtain c₈₇ assuming all the primary input signals are available at time 0.

(5) [Adder, 20 points] The delay of an AND (OR) gate is Δ and the delay of a twolevel (sum-of-product) logic is 2 Δ . We are designing a 1024-bit carry-lookahead adder. Represent c_{87} hierarchically using group-generated and group-propagated carries ($g_{i:k}, p_{i:k}$) and c_0 (primary carry-in), then calculate the delay to obtain c_{87} assuming all the primary input signals are available at time 0.