Homework Assignment 4

(Due Dec. 9, 11:59pm)
(1) [Adder, 10 points] Add the following three numbers using the carry select adder shown below. $\mathrm{A}=10101010$, $\mathrm{B}=01010101$, Cin=1 (Fill in the blank boxes).

(2) [Adder, 10 points] Add the following three numbers using the carry skip adder shown below. $\mathrm{A}=10101010, \mathrm{~B}=01010101$, Cin=1 (Fill in the blank boxes).

(3) [Adder, 10 points] Add the following three numbers using the conditional sum adder shown below. $\mathrm{A}=11101110, \mathrm{~B}=01111001$, $\mathrm{Cin}=1$ (Fill in the blank boxes).

(4) [Adder, 20 points] The delay of an AND (OR) gate is Δ and the delay of a twolevel (sum-of-product) logic is 2Δ. We are designing a 1024-bit Kogge-Stone adder. Represent c_{87} hierarchically using group-generated and group-propagated carries $\left(g_{i: k}, p_{i: k}\right)$ and c_{0} (primary carry-in), then calculate the delay to obtain c_{87} assuming all the primary input signals are available at time 0 .
(5) [Adder, 20 points] The delay of an AND (OR) gate is Δ and the delay of a twolevel (sum-of-product) logic is 2Δ. We are designing a 1024-bit carry-lookahead adder. Represent c_{87} hierarchically using group-generated and group-propagated carries $\left(g_{i: k}, p_{i: k}\right)$ and c_{0} (primary carry-in), then calculate the delay to obtain c_{87} assuming all the primary input signals are available at time 0 .

