EE434 ASIC & Digital Systems

Partha Pande
School of EECS
Washington State University
pande@eecs.wsu.edu

Spring 2015
Dae Hyun Kim
daehyun@eecs.wsu.edu

Lecture 4

More on CMOS Gates

Ref: Textbook chapter 2

Some of the slides are adopted from Digital Integrated Circuits by Jan M Rabaey

CMOS Properties

- Full rail-to-rail swing; high noise margins
- Logic levels not dependent upon the relative device sizes; ratio less
- Always a path to Vdd or Gnd in steady state; low output impedance
- Extremely high input resistance; nearly zero steady-state input current
- No direct path between power and ground; no static power dissipation
- Propagation delay function of load capacitance and resistance of transistors
- N fan-in gates need 2N transistors

Special CMOS Design Styles

- Ratioed Logic (Pseudo-nMOS)
- Dynamic CMOS
- Domino Logic
- Multiple-Output Domino Logic
- Dual-Rail Logic
- Pass Transistor Logic
- Transmissions Gate Logic

Ratioed Logic

- Pseudo NMOS
 - Smaller area and load, but static power dissipation
 - Follow board notes

Pseudo-nMOS

- More accurate computation
 - PMOS: Saturation
 - NMOS: Linear

$$\frac{\beta_n}{2} \left[2(V_{DD} - V_{tn})V_{OL} - V_{OL}^2 \right] = \frac{\beta_p}{2} (V_{DD} - |V_{tp}|)^2$$

$$V_{OL} = (V_{DD} - V_{tn}) - \sqrt{(V_{DD} - V_{tn})^2 - \frac{\beta_p}{\beta_n} (V_{DD} - |V_{tp}|)^2}$$

Pseudo-nMOS

- In static circuits at every point in time (except when switching) the output is connected to either GND or V_{DD} via a low resistance path.
 - fan-in of n requires 2n (n N-type + n P-type) devices
- Dynamic circuits rely on the temporary storage of signal values on the capacitance of high impedance nodes.
 - requires on n + 2 (n+1 N-type + 1 P-type) transistors

Two phase operation

Precharge (CLK = 0)

Evaluate (CLK = 1)

Operation

•
$$F = \overline{A \cdot B \cdot C}$$

Precharge

Evaluation

Properties of Dynamic CMOS

- Logic function is implemented by the PDN only
 - number of transistors is N + 2 (versus 2N for static CMOS gates)
- Full swing outputs
- Non-ratioed sizing of the devices does not affect the logic levels
- Faster switching speeds
 - reduced load capacitance due to lower input capacitance (C_{in})
 - reduced load capacitance due to smaller output loading (Cout)

Properties of Dynamic CMOS

- Overall power dissipation usually higher than static CMOS
 - no static current path ever exists between V_{DD} and GND
 - no glitching
 - higher transition probabilities
 - extra load on Clk
- Needs a precharge/evaluate clock

Charge sharing

Charge sharing

Charge sharing

$$-V_{out} = V_1 = V_2$$

$$- Q = C_{out}V_{DD} = C_{out}V_f + C_1V_f + C_2V_f = (C_{out} + C_1 + C_2)V_f$$

$$-V_f = \left(\frac{c_{out}}{c_{out} + c_1 + c_2}\right) V_{DD}$$

- How to solve the charge sharing problem
 - Constraint: $C_{out} \gg C_1 + C_2$
 - Keeper

How to solve the charge sharing problem

Precharge internal nodes using a clock-driven transistor (at the cost of increased area and power)

Domino Logic

Domino Logic

Domino Logic

Example

$$-Sum = a \oplus b \oplus c$$

Properties of Domino Logic

- Only non-inverting logic can be implemented
- Very high speed
 - static inverter can be skewed, only L-H transition
 - Input capacitance reduced

Multiple-Output Domino Logic (MODL)

- $f_1 = G$
- $f_2 = F \cdot G$

Dual-Rail Logic Network

Differential Cascode Voltage Switch Logic (DCVSL)

Dual-Rail Logic Network

Differential Cascode Voltage Switch Logic (DCVSL)

Pass Transistor Logic

- N transistors
- No static consumption

Pass Transistor Logic

Example

Issues with Pass Transistor Logic

- Threshold drop
- Capacitive feed through
- Charge sharing
- Follow board notes

Pass Transistor Logic

Capacitive Feedthrough

Transmission Gate Logic

- The control signal S turns the transfer gates on and off depending on its value.
- When s=1, the upper transfer gate is on and that allows A to follow to the output

• Implement the Multiplexer with static CMOS and compare with this

Transmission Gate Logic

