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Lecture 4

More on CMOS Gates

Ref: Textbook chapter 2

Some of the slides are adopted from Digital Integrated Circuits
by Jan M Rabaey




CMOS Properties

Full rail-to-rail swing; high noise margins

Logic levels not dependent upon the relative device sizes; ratio less
Always a path to Vdd or Gnd in steady state; low output impedance
Extremely high input resistance; nearly zero steady-state input current
No direct path between power and ground; no static power dissipation

Propagation delay function of load capacitance and resistance of
transistors

N fan-in gates need 2N transistors




Special CMOS Design Styles

Ratioed Logic (Pseudo-nMQOS)
Dynamic CMOS

Domino Logic

Multiple-Output Domino Logic
Dual-Rail Logic

Pass Transistor Logic

Transmissions Gate Logic



Ratioed Logic

 Pseudo NMOS
— Smaller area and load, but static power dissipation
— Follow board notes
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Pseudo-nMOS

 More accurate computation
— PMOS: Saturation
— NMOS: Linear
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Vout

Pseudo-nMOS

Vout = Vbp

R,
Vout =|Vbp m

J— V Rn
PP R, + R,
R, = 9R,

Vour = 0.1Vpp
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Dynamic CMOS

e In circuits at every point in time (except when switching) the
output is connected to either GND or Vg via a low resistance path.

— fan-in of n requires 2n (n N-type + n P-type) devices

circuits rely on the temporary storage of signal values on the
capacitance of high impedance nodes.

— requires on n + 2 (n+1 N-type + 1 P-type) transistors



Dynamic CMOS

Two phase operation
Precharge (CLK =0)
Evaluate (CLK =1)

Clk —

Out



Dynamic CMOS

e QOperation
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Dynamic CMOS
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Dynamic CMOS

 Precharge
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Evaluation

CK=1

Dynamic CMOS
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Properties of Dynamic CMOS

Logic function is implemented by the PDN only
— number of transistors is N + 2 (versus 2N for static CMOS gates)

Full swing outputs
Non-ratioed - sizing of the devices does not affect the logic levels
Faster switching speeds

— reduced load capacitance due to capacitance (C,)
— reduced load capacitance due to smaller output loading (Cout)
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Properties of Dynamic CMOS

e Overall power dissipation usually higher than static CMOS
— no static current path ever exists between Vy, and GND
— no glitching
— higher transition probabilities
— extra load on Clk

 Needs a precharge/evaluate clock
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Dynamic CMOS

Charge sharing
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Dynamic CMOS

e Charge sharing
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Dynamic CMOS

 Charge sharing
- Vour =V1 =V,
~ Q = CoutVpp = CoutVy + C1Vs + CoVr = (Coye + C1 + GV

Cout
- V= (— Yy
f (cout+cl+cz) DD
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Dynamic CMOS

 How to solve the charge sharing problem
— Constraint: C,,; >» C; + C,

— Keeper
Keeper
/
Clk <M. M,. lP
A — :iCL Out
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Dynamic CMOS

 How to solve the charge sharing problem

Clk M, M, J— CIk
....... ; Out
A
B
Clk —1[M,

Precharge internal nodes using a clock-driven transistor
(at the cost of increased area and power)
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Domino Logic
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CK

Domino Logic
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Domino Logic

 Example

- Sum = a®bDc b:)DT)D’S“m
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Properties of Domino Logic

Only non-inverting logic can be implemented

Very high speed
— static inverter can be skewed, only L-H transition
— Input capacitance reduced
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Multiple-Output Domino Logic (MODL)
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Dual-Rail Logic Network

Differential Cascode Voltage Switch Logic (DCVSL)

VDD
f f
X1 — X,
X,— Logic tree — X,
X3— —X3
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Dual-Rail Logic Network

Differential Cascode Voltage Switch Logic (DCVSL)

f a-b
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Pass Transistor Logic

N transistors
e No static consumption

Out
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Example

Pass Transistor Logic

—F=A"B

— F=A+B
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Vidd

Issues with Pass Transistor Logic

Threshold drop
Capacitive feed through
Charge sharing

Follow board notes
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Pass Transistor Logic

« Capacitive Feedthrough
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Transmission Gate Logic

S VDD
* The control signal S turns the
1 | transfer gates on and off depending
on its value.
E— —O| [ « When s=1, the upper transfer gate is
_ on and that allows A to follow to the
S — F output
—‘ M1
| —
S

* Implement the Multiplexer with static CMOS and compare with this
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Transmission Gate Logic
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