Homework Assignment 1 (Due 4:10pm, Jan. 25)

[Transistor Characteristics] Assume that $V_{tn} \approx V_{DD}/4$.

- (1) [10 points] Draw a graph of V_D (x-axis) vs. V_S (y-axis) for $V_G = 0$.
- (2) [10 points] Draw a graph of V_D (x-axis) vs. V_S (y-axis) for $V_G = V_{DD}$.
- (3) [10 points] Draw a graph of V_G (x-axis) vs. V_S (y-axis) for $V_D = 0$.
- (4) [10 points] Draw a graph of V_G (x-axis) vs. V_S (y-axis) for $V_D = V_{DD}$.

[Transistor Characteristics] Assume that $|V_{tp}| \approx V_{DD}/4$.

- (5) [10 points] Draw a graph of V_S (x-axis) vs. V_D (y-axis) for $V_G = 0$.
- (6) [10 points] Draw a graph of V_S (x-axis) vs. V_D (y-axis) for $V_G = V_{DD}$.
- (7) [10 points] Draw a graph of V_G (x-axis) vs. V_D (y-axis) for $V_S = 0$.
- (8) [10 points] Draw a graph of V_G (x-axis) vs. V_D (y-axis) for $V_S = V_{DD}$.
- (9) [10 points] Design the following logic using NFETs and PFETs. Available inputs: A, B, C. Try to minimize # TRs.

$$F = A \cdot (\overline{B + C})$$