EE434
 ASIC \& Digital Systems

Automatic Layout Generation (Encounter)

Spring 2019
Dae Hyun Kim
daehyun@eecs.wsu.edu

Preparation for Lab3

- Download the following file into your working directory.
- wget http://eecs.wsu.edu/~ee434/Labs/lab3.tar.gz
- Unzip it.
- tar xvfz lab3.tar.gz

What We Are Going To Do

1. Chip outlining
2. P/G network design
3. Placement
4. Pre-CTS optimization
5. CTS
6. Post-CTS optimization
7. Routing
8. Post-routing optimization
9. Fill insertion

1. Chip Outlining

- Benchmark
- VQS64_4 (four-input 64-bit pipelined quick sort)
- input [63:0] mX1, mX2, mX3, mX4
- input mCLK
- output [63:0] mY1, mY2, mY3, mY4

1. Chip Outlining

- VQS64_4_fm.globals
- init_pwr_net: Power nets.
- init_gnd_net: Ground nets.
- init_lef_file: Physical library files.
- init_mmmc_file: Analysis view files.
- mmmc: Multi-mode multi-corner
- init_verilog: Verilog netlists.
- VQS64_4_fm.view
- create_rc_corner: Capacitance table + RC analysis corner
- create_library_set: Library files
- create_constraint_mode: Constraint files
- create_delay_corner: Library + RC corner
- create_analysis_view: Analysis view
- set_analysis_view: Setup and hold analysis view

1. Chip Outlining

- Source "edi.sh".
- \% source edi.sh
- Run Encounter.
- \% encounter

1. Chip Outlining

- Click "File" \rightarrow "Import Design...".
- In the "Design Import" window, click "Load..." and choose "VQS64_4_m.globals". This will automatically fill up the settings. Then, click "OK".

1. Chip Outlining

- See the terminal for Encounter messages. There might be some Error or Warning messages.
- In the Encounter main window, press " f " to see the outline of the layout.
- Encounter automatically computes and prepares the layout area.
- In the main window, click "Floorplan" \rightarrow "Specify Floorplan...".
- Set the core utilization to 0.6.
- Set the core-to-left, core-to-top, core-to-right, and core-to-bottom to 5.0.
- Then, click OK.

1. Chip Outlining

1. Chip Outlining

- Now, you will see the following window.

Save

- Let's save the current design.
- In the terminal, run the following command to save the current design into "test_01_floorplan.enc". encounter \#> saveDesign test_01_floorplan.enc
- Later on, you can load the design as follows.
- When you launch Encounter, add the following option to load the specified design.
- encounter -init test_01_floorplan.enc
- or, after you launch Encounter, run the following command.
- source test_01_floorplan.enc

2. P/G Network Design

- Click "Power" \rightarrow "Power Planning" \rightarrow "Add Rings...".

2. P/G Network Design

- Fill in the input boxes as shown in the previous page and click OK.

2. P/G Network Design

- Click "Route" \rightarrow "Special Route...".

2. P/G Network Design

- P/G network

2. P/G Network Design

- saveDesign test_02_pg.enc

3. Placement

- Let's place the instances (cells).
- In the main window, click "Place" \rightarrow "Place Standard Cell".
- In the following window, turn off "Include Pre-Place Optimization".

- Then, click "OK" to run Placement.

3. Placement

- It shows placement and trialRoute results.
- See the terminal. It shows some more information.
- Total wire length: 46,920um
- Save it.
- saveDesign test_03_pl.enc

```
Total length: 4.692e+04um, number of vias: }1703
Ml(H) length: 1.187e+03um, number of vias: 9371
M2(V) length: 2.059e+04um, number of vias: 6881
M3(H) length: 1.976e+04um, number of vias: 506
M4(V) length: 3.390e+03um, number of vias: 167
M5(H) length: l.26le+03um, number of vias: 68
M6(V) length: 7.066e+02um, number of vias: 25
M7(H) length: 9.350e+00um, number of vias: 8
M8(V) length: 6.480e+00um, number of vias: 6
M9(H) length: 4.140e+00um, number of vias: 0
M10(V) length: 0.000e+00um
```


Visibility

- Let's see the placement result only.
- Turn off the following check-box to turn off the visibility of the wires.

Timing Analysis

- Run the following command to turn off SI-awareness.
- encounter \#> setDelayCalMode -siAware false
- Then, run the following command to analyze setup time.
- encounter \#> timeDesign -preCTS
- It will show the following summary:

Timing Analysis

Timing Analysis

- Run the following command to check the longest path. - encounter \#> report_timing

Path 1: VIOLATED Setup Check with Pin rCl reg[52]/CK
Endpoint: rCl reg[52]/D (v) checked with leading edge of 'myCLK' Beginpoint: mX2[1]
(\wedge) triggered by leading edge of '@'
Analysis View: NG_view_typ

Other End Arrival Time-	0.000	
- Setup	0.047	
+ Phase Shift	1.000	
= Required Time	0.953	
- Arrival Time	2.606	
$=$ Slack Time	-1.654	
\quad Clock Rise Edge		0.000
\quad Input Delay	0.000	
\quad = Beginpoint Arrival Time	0.000	

\| Instance	Arc	\| Cell	Delay	Arrival Time	Required Time
	\| mX2[1]	\|		0.000	-1.654
\| 44103	$\mathrm{A}^{\wedge}->\mathrm{ZN} \mathrm{v}$	\| INV_X1	0.010	0.011	-1.643
\| U3853	$\mathrm{C} 2 \mathrm{v}->\mathrm{ZN}$ ^	\| OAI211_X1	0.034	0.045	-1.609
\| U3852	$\mathrm{A}^{\wedge} \rightarrow>\mathrm{ZN}$ v	\| OAI221_X1	0.034	0.079	-1.575
U3861	A v -> ZN	\| OAI221_X1	0.026	0.105	-1.549
U3860	$\mathrm{A}^{\wedge} \rightarrow>\mathrm{ZN}$ v	\| OAI221_X1	0.041	0.146	-1.508
\| U3859	$\mathrm{A} v \rightarrow \mathrm{ZN}^{\wedge}$	\| OAI221_X1	0.028	0.174	-1.480
\| U3858	$\mathrm{A}^{\wedge} \rightarrow \mathrm{CN}$ v	\| OAI221_X1	0.040	0.214	-1.440
U3869	A v \rightarrow Z ZN	\| OAI221_X1	0.027	0.241	-1.413
\| U3868	$A^{\wedge} \rightarrow \mathrm{ZN} \mathrm{v}$	\| OAI221_X1	0.040	0.281	-1.372
\| U3867	A v $\rightarrow>\mathrm{ZN}{ }^{\text {^ }}$	\| OAI221_X1	0.029	0.311	-1.343
\| U3866	$\mathrm{A}^{\wedge} \rightarrow \mathrm{CN}$ v	\| OAI221_X1	0.041	0.352	-1.302
U3877	A v $\rightarrow>\mathrm{ZN}$	\| OAI221_X1	0.028	0.380	-1.274
\| U3876	$A^{\wedge} \rightarrow \mathrm{ZN} \mathrm{v}$	\| OAI221_X1	0.041	0.421	-1.233
\| U3875	A v $\rightarrow>\mathrm{ZN}$ ^	\| OAI221_X1	0.028	0.449	-1.205
U3874	$\mathrm{A}^{\wedge} \rightarrow>\mathrm{ZN}$ v	\| OAI221_X1	0.041	0.490	-1.164
\| U3885	A $\mathrm{v} \rightarrow \mathrm{>} \mathrm{ZN}$	\| OAI221_X1	0.027	0.517	-1.137
\| U3884	$\mathrm{A}^{\sim} \rightarrow>\mathrm{ZN}$ v	\| OAI221_X1	0.040	0.556	-1.097
\| U3883	A v $->\mathrm{ZN}$ ^	\| OAI221_X1	0.027	0.584	-1.070
U3882	A ^ $->\mathrm{ZN}$ v	\| OAI221-X1	0.040	0.624	-1.030
U3893	A v -> ZN	OAI221 X1	0.027	0.651	-1.003

4. Pre-CTS Optimization

- Run the following command to optimize the design before CTS.
- encounter \#> optDesign -preCTS
- (This will take some time, up to 20~30 minutes depending on the machine you are working in).
- After Pre-CTS optimization is done, you will see the following result:

4. Pre-CTS Optimization

- Pre-CTS optimization

4. Pre-CTS Optimization

- saveDesign test_04_prectsopt.enc

5. Clock Tree Synthesis (CTS)

- Open "VQS64_4_fm.ctstch" in a text editor and see the spec.
- Run the following command to run CTS.
- encounter \#> clockDesign -specFile VQS64_4_fm.ctstch outDir clk_report

5. Clock Tree Synthesis (CTS)

- CTS

```
# Analysis View: NG_view_typ
********** Clock mCLKK Post-CTS Timing Analysis ***********
Nr. of Subtrees : l
Nr. of Sinks : 768
Nr. # Sinks (64 F/Fs*12 groups = 768)
Nr. of Buffer : 涪\longleftarrow # buffers inserted
Nr. of Level (including gates) : 2 \longleftarrow
Root Rise Input Tran : 100(ps)
Root Fall Input Tran : 100(ps)
No Driving Cell Specified!
Max trig. edge delay at sink(R): rC2_reg[53]/CK 163.3(ps)
Min trig. edge delay at sink(R): mY2_reg[34]/CK 155.5(ps)
(Actual) (Required)
Rise Phase Delay : 155.5~163.3(ps) 0~1000(ps)
Fall Phase Delay : 168.2~175.6(ps) 0~1000(ps)
Trig. Edge Skew
Rise Skew
Fall Skew
Max. Rise Buffer Tran.
Max. Fall Buffer Tran.
Max. Rise Sink Tran.
Max. Fall Sink Tran.
Min. Rise Buffer Tran.
Min. Fall Buffer Tran.
Min. Rise Sink Tran.
Min. Rise Sink Tran. 
view NG_view_typ : skew = 7.8ps (required = 20ps)
```


5. Clock Tree Synthesis (CTS)

- You can see the clock tree by the following command:
- encounter \#> displayClockTree -clk mCLK -allLevel

5. Clock Tree Synthesis (CTS)

- saveDesign test_05_cts.enc

Timing Analysis

- Run the following command to check timing.
- timeDesign -postCTS

6. Post-CTS Optimization

- Although we already satisfied the timing without any further optimization after CTS, we will run post-CTS optimization.
- encounter \#> optDesign -postCTS

6. Post-CTS Optimization

- saveDesign test_06_postctsopt.enc

Timing Analysis

- Run the following command to check timing.
- timeDesign -postCTS

7. Routing

- Click "Route" \rightarrow "NanoRoute" \rightarrow "Route...".
- Turn off "Fix Antenna" and click OK to run routing.

7. Routing

7. Routing

- Routing result.
- Wirelength: 52,077um
- No DRC violations.

```
#Complete Detail Routing.
#Total number of nets with non-default rule or having extra spacing = 38
#Total wire length = 52077 um.
#Total half perimeter of net bounding box = 48628 um.
#Total wire length on LAYER metall = 1604 um.
#Total wire length on LAYER metal2 = 15448 um.
#Total wire length on LAYER metal3 = 19261 um.
#Total wire length on LAYER metal4 = 9446 um.
#Total wire length on LAYER metal5 = 4644 um.
#Total wire length on LAYER metal6 = 1314 um.
#Total wire length on LAYER metal7 = 236 um.
#Total wire length on LAYER metal8 = 68 um.
#Total wire length on LAYER metal9 = 56 um.
#Total wire length on LAYER metallo = 0 um.
#Total number of vias = 24082
#Up-Via Summary (total 24082):
#
## Metal 1 10605
# Metal 2 10028
# Metal 3 2748
# Metal 4 515
# Metal 5 147
# Metal 6 25
# Metal 7 8
# Metal 8 6
*--.........................
#Total number of DRC violations = 0
```


7. Routing

- saveDesign test_07_route.enc

Timing Analysis

- Run the following command to check timing.
- timeDesign -postRoute

8. Post-Routing Optimization

- Although we already satisfied the timing without any further optimization after routing, we will run post-routing optimization.
- encounter \#> optDesign -postRoute

8. Post-Routing Optimization

- saveDesign test_08_postrouteopt.enc

9. Fill Insertion

- Click "Route" \rightarrow "Metal Fill" \rightarrow "Setup...".
- Click "Load" and choose "metalfill.cmd" to load the setting I made.
- Click OK.
- Click "Route" \rightarrow "Metal Fill" \rightarrow "Add".
- Click OK to insert metal fills.

9. Fill Insertion

- The following shows my fill insertion result.

Timing Analysis

- Run the following command to analyze timing.
- encounter \#> timeDesign -postRoute

9. Fill Insertion

- saveDesign test_09_fill.enc

