
Course Project

Part 1

 Design of a Matrix Arbiter for a NoC router

1 Background

The aim of the course project is to design a router for Network on Chip (NoC)

applications. The canonical architecture of the router is shown in Fig. 1. The number of

ports in the router varies with the interconnect architecture. However, the basic

architecture of a router port remains the same.

Fig.1: Virtual-channel router

The different components of a router port are shown in Fig. 2. It mainly consists of

input/output FIFO buffers, input/output arbiters, MUX and DEMUX units, and a routing

block. In order to have a considerably high throughput, we use a virtual channel router,

where each port of the router has multiple parallel buffers.

Each physical input port has more than one virtual channel, uniquely identified by the

virtual channel identifier (VCID). Flits may simultaneously arrive at more than one

virtual channel. As a result, an arbitration mechanism is necessary to allow only one

virtual channel to access a single physical port. Let there be m virtual channels

corresponding to each input port; we need an m: 1 arbiter at the input. As an example as

shown in Fig. 2, m is equal to 4. Similarly, flits from more than one input port may

simultaneously try to access a particular output port. If k is the number of ports in a

router, then we need a (k-1):1 arbiter at each output port. The routing logic block

determines the output port to be taken by an incoming flit.

OUTPUT

DEMUX

OUTPUT

MUX
INPUT

DEMUX

INPUT

MUX

Input

arbiter

Routing
logic

Output
arbiter

vcid

req
1

req
2

req
3

req
4

gnt
1

gnt
2

gnt
3

gnt
4

req1

req
2

req
3

req
4

req
5

gnt
1

gnt
5

Output virtual channelsInput virtual channels

sa

da

OUTPUT

DEMUX

OUTPUT

MUX
INPUT

DEMUX

INPUT

MUX

Input

arbiter

Routing
logic

Output
arbiter

vcid

req
1

req
2

req
3

req
4

gnt
1

gnt
2

gnt
3

gnt
4

req1

req
2

req
3

req
4

req
5

gnt
1

gnt
5

Output virtual channelsInput virtual channels

sa

da

K=6

m=4

Fig.2: Block diagram of a router

In the first part of the project you are to design the input arbiter for the router. There

are different possible arbitration mechanisms, like round-robin, queuing, time division

multiple access (TDMA), and matrix arbitration. In this project you will design a matrix

arbiter. The matrix arbiter stores priorities between n requestors in a binary n-by-n

matrix. The structure of the matrix in case of four requesters is shown in Fig. 3. The

priority of a requester with respect to itself does not have any physical significance and

hence the elements along the main diagonal in the priority matrix are void and denoted by

X.

Each matrix element [i, j] records the binary priority between each pair of inputs. For

example, suppose requester i has a higher priority than requester j, then the matrix

element [i, j] will be set to 1, while the corresponding matrix element [j, i] will be 0. A

requester will be granted the resource if no other higher priority requester is bidding for

the same resource. Once a requester succeeds in being granted a resource, its priority is

updated and set to be the lowest among all requesters. Once a requestor succeeds in

arbitration, its priority is set to be the lowest among all requestors. Hence, when requestor

i is granted the resource, its priority is set to be the lowest among all requestors by setting

[i, *] to 0 (clearing row i, so that requestor I has lower priority than all other requestors)

and [*, i] to 1 (setting column i, so that other requestors have higher priority over

requestor i).

12 13 14

21 23 24

31 32 34

41 42 43

X p p p

p X p p

p p X p

p p p X

Fig. 3: Priority matrix

As an example, consider that the status of the priority matrix is as shown in left matrix in

Fig. 4 and requestor 2 is granted the resource. Then after arbitration, column 2 is set to 1

and row 2 is set to 0, such that requestor 2 has the lowest priority with respect to all other

requestors.

0 0 1 1 0 1

1 0 0 0

0 0

X X

X X X X

X X X X X X

X X X X X X X X

Fig. 4: Priority matrix transition when requestor 2 is granted access.

The gate-level design of an n: 1 matrix arbiter, which handles n requestors, is shown in

Fig. 5. An arbiter has n grant circuits, each determining if a requestor should be granted.

The grant signals then feed update circuits, which updates matrix priorities.

Figure 5: Gate level design of matrix arbiter

2 Design Details

In this lab you are supposed to design a 4:1 arbiter, i.e. there will be 4 requestors

trying for a single resource. As shown in Fig. 1 for a 4:1 arbiter you will need 12

elements in the matrix arbiter. But remember jiij pp . In this situation you will need

only 6 elements in the priority matrix. You can implement each element of the

priority matrix as an S-R flip flop, with Q representing pij and Q representing pji.

The block diagram of the matrix arbiter and the circuit diagram to implement one

element of the priority matrix are shown in Fig 6.

First create one element of the priority matrix, combining the S-R latch and the

update circuit.

The Grant block will have the requests and the priorities as inputs and it generates

gnt1 to gnt4 signals. The gnti and gntj signals are coming from the grant block. Let

reqi be the ith request; gntn, the nth grant; and mij, the ith row and jth column element

in the priority matrix. Using these variables,

The Priority matrix block will have gnt1 to gnt4 signals as inputs and it generates the

priority signals as outputs.

The top level of the arbiter will have two components, the priority matrix with the

update elements and the grant circuit. The inputs to the top level are the four request

signals and the outputs are the grant signals. Additionally, you will need to design the

input mux and FIFO buffers.

Fig. 6: (a) Block diagram of an arbiter; (b) one element of the priority matrix

After designing the entire input port (arbiter, MUX, and FIFOs), you need to test it for

correct functionality by writing a test bench in Synopsys. Once you are done with the

functional simulation, you need to synthesize and provide the power and area reports as

well as a timing report showing you met timing requirements for your given clock.

3 Report

You are required to submit a brief 1-2 page report clearly showing how you have implemented

each block. You need to submit the VHDL (or Verilog) code also. If you work in a group of two

then submit one report each group.

Each report should start with the following declaration signed by each student

“The submitted report is my own work. I/we have not copied the program from any other

sources. If found guilty of copying then I/we will receive a grade of “zero” for this lab.”

4 Due Date

You need to demonstrate and submit your design by 8
th
 November.

