
This is a warm-up lab assignment, meant to help you understand and get familiar

with the process. You need to show the results to the TA or the instructor within

Friday, 18th October 2013.

Design a memory controller whose block diagram is shown below.

The functional description of the state machine is as follows.

 First, a synchronous reset places the state machine in the idle state. When

the memory buffer is not being accessed, the controller remains in the idle

state.

 If the BUS_ID is asserted as F3 (hex) while the controller is in idle, then the

machine transitions to the decision state. (F3 is just an example; feel free to

choose your bus id)

 On the next clock cycle, the controller transitions to either read1 or write

state, depending on the value of RW signal.

 If the access is a read, the controller branches to the read portion of the

state machine. A single-word read is indicated by the assertion of ready

Memory

Controller

BUS_ID

RESET

RW

READY

BURST

CLK

SRAM Memory

Array

Address
Data

OE

WE

ADDR1

ADDR2

without the assertion of burst while in the read1 state. In this case, the

controller returns to the idle state.

 A burst read is indicated by the assertion of both ready and burst while in

the read1 state. In this case the machine transitions through each of the

read states, advancing on ready. OE (Output Enable) is asserted during each

of the read cycles. Addr is incremented in successive read cycles following

the first.

 If the access is a write, it can only be single-word write.

 Therefore, after determining that the access is a write in the decision state,

the controller branches to the write portion of the state machine.

 It asserts WE to the memory buffer, waits for the ready signal from the bus,

and then returns directly to the idle state.

The state machine flow diagram is shown below.

idle

Decision

write read1

read2

re
a

d
y

RW_b
RW

re
a

d
y

 &
 b

u
rs

t_
b

re
a

d
y

read4

read3

ready & burst

ready

ready

re
a

d
y

What you have to do:

1. Associate outputs with appropriate states based on the FSM functional

description provided above.

2. Write VHDL or Verilog code to implement the state machine and the outputs.

3. Code a testbench to show that your design works as expected. In particular,

you need to show that each of the 9 transitions (9 arrows) occur as

expected. In addition, you have to add two test statements that will test for

input combinations, such as RW_b & ready_b to verify that unintended

transitions do not occur.

4. Run VCS to simulate your design with your testbench and show the output

waveforms for each of the signals of interest.

