EE434

ASIC and Digital Systems

Midterm Exam 1

Feb. 27, 2019. (4:10pm - 5pm)
Instructor: Dae Hyun Kim (daehyun@eecs.wsu.edu)

Name:

WSU ID:

Problem	Points	
1	10	
2	10	
3	10	
4	20	
5	20	
6	10	
Total	80	

Problem \#1 (Static CMOS gates, 10 points)

The following shows the NFET network of a static CMOS gate. Express the output Y as a Boolean function of the inputs $(A \sim)$. (You don't need to simplify the expression.)

Problem \#2 (Transmission Gates, 10 points)

Design (draw a schematic) the following Boolean function using transmission gates only.

$$
Y=(A \oplus B)+\overline{((A \cdot B) \oplus C)}
$$

Available inputs: $A, B, C, \bar{A}, \bar{B}, \bar{C}$. You cannot use Power $\left(V_{D D}\right)$ and Ground $\left(V_{S S}\right)$. Use the following symbols for the transmission gates.

(\# TGs ≤ 6 : 10 points. $7 \leq \# T G s \leq 8: 7$ points. $9 \leq \# T G s \leq 10: 5$ points. \# TGs>10: 0 points)

Problem \#3 (Transistor Sizing, 10 points)

Size the transistors in the following pull-down network. R_{n} is the resistance of a 1 X NMOS transistor. C_{L} is the load capacitance. Ignore parasitic capacitances. Target delay: $\tau_{T} \leq R_{n} \cdot C_{L}$. Try to minimize the total area.

(Total width $\mathrm{W} \leq 31 \mathrm{X}$: 10 points. $31 \mathrm{X}<\mathrm{W} \leq 32 \mathrm{X}$: 8 points. $32 \mathrm{X}<\mathrm{W} \leq 34 \mathrm{X}$: 5 points. $34 \mathrm{X}<\mathrm{W}$: 3 points)

A:
B:
C:
D:
E:
F:
G:
H:
I:
Total:

Problem \#4 (Transistor Sizing, 20 points)

Solve either 4-(1) or 4-(2). You don't need to solve both.
(1) (20 points) Size the transistors in the following pull-down network. R_{n} is the resistance of a 1X NMOS transistor. C_{L} is the load capacitance. Ignore parasitic capacitances. Target delay: $\tau_{T} \leq R_{n} \cdot C_{L}$. Minimize the total area (i.e., size the transistors optimally).

(2) (12 points) Answer the following questions.
(a) The optimal size of transistor A is greater than 4X (True / False).
(b) The optimal size of transistor B is greater than $4 X(T / F)$.
(c) The optimal size of transistor B is equal to the optimal size of transistor D (T / F).
(d) The optimal size of transistor E is greater than $2 X$ (T / F).
(e) The optimal size of transistor C is $3 \times$ the optimal size of transistor $E(T / F)$.
(f) The sum of the optimal widths of all the transistors is greater than or equal to 18 X (T/F).

Problem \#5 (Layout, 20 points)

Signal input: A, D. Signal output: Y. Clock: CK

1) (10 points) Convert the layout into a transistor-level schematic.
2) (10 points) What is the function of the circuit?

Problem \#6 (Layout, 10 points)

Input: A, B
Output: Y
What is the function of this circuit?

