EE434 ASIC and Digital Systems

Midterm Exam 2

April 8, 2015. (5:10pm - 6pm)

Instructor: Dae Hyun Kim (daehyun@eecs.wsu.edu)

Name:

WSU ID:

Problem	Points	
1	20	
2-1	13	
2-2	7	
3-1	10	
3-2	10	
4	20	
Total	80	

^{*} Allowed: Textbooks, cheat sheets, class notes, notebooks, calculators, watches

^{*} Not allowed: Electronic devices (smart phones, tablet PCs, laptops, etc.) except calculators and watches

Problem #1 (Layout, 20 points).

Represent Out as a Boolean function of EN and A or describe the function of the following layout in as much detail as possible (Primary inputs: A, EN. Primary output: Out).

Problem #2 (Coupling Analysis, 20 points).

Three nets are coupled through C_{c1} and C_{c2} as shown in the following figure:

Net 3 is the only aggressor and Net 2 and Net 1 are victims. Although Net 1 is not directly connected to Net 3, Net 1 is affected by the potential change of Net 2 when Net 3 switches. The above figure can be simplified as follows:

1 – 13 points) Derive ΔV_2 and ΔV_1 as a function of ΔV_3 , C_{g1} , C_{g2} , C_{c1} , and C_{c2} .

2-7 points) True/False questions (Hint: Use your intuition or the formulas you derived in the above problem).

- a) If C_{g1} increases, ΔV_1 increases (true/false).
- b) If C_{g1} increases, ΔV_2 increases (true/false).
- c) If C_{g2} increases, ΔV_1 increases (true/false).
- d) If C_{g2} increases, ΔV_2 increases (true/false).
- e) If C_{c1} increases, ΔV_1 increases (true/false).
- f) If C_{c2} increases, ΔV_1 increases (true/false).
- g) If C_{c2} increases, ΔV_2 increases (true/false).

Problem #3 (Coupling Minimization, 20 points).

1-10 points) Compute effective capacitance for the net in the middle (d_m) for the following transition patterns:

Transition patterns (d _{m+1} d _m d _{m-1})	Effective cap of d _m
010 → 000	
010 → 001	
010 → 100	
010 → 101	

2-10 points) A bus consisting of five bits ($b_1 b_2 b_3 b_4 b_5$) is routed in three metal layers. Due to some unknown reasons, four of them ($b_1 b_2 b_4 b_5$) are routed in parallel with b_3 . The following shows the coupling capacitance among the five nets.

Due to the coupling between b_3 and b_k , the worst-case effective coupling capacitance that b_3 experiences will be $8 \cdot C_c$. List all transition patterns that make b_3 experience $8 \cdot C_c$ and $7 \cdot C_c$.

Problem #4 (Buffer Insertion, 20 points).

A source (type: BUF_X1) drives a sink (type: BUF_X2) through a net and you are supposed to insert a buffer (type: BUF_X1) between them as shown in the above figure. Find an optimal location of the buffer minimizing the total delay, i.e., represent "s" as a function of the following parameters.

- Output resistance of BUF_X1: R₁
- Input capacitance of BUF_X1: C1
- Input capacitance of BUF_X2: C2
- Total length of the net: L (um)
- Total wire resistance: R_w
- Total wire capacitance: C_w
- $(C_w + C_2 > C_1)$