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Problem #1 (Layout Analysis, 10 points) 

The following combinational logic has six primary inputs (A, B, C, D, E, F) and a primary 
output (Out). Find all input vectors that can detect a stuck-at-1 fault at input E. 

 

𝑍𝑍 = 𝐴𝐴 ∙ 𝐵𝐵 + 𝐶𝐶 ∙ 𝐷𝐷 + 𝐸𝐸 ∙ 𝐹𝐹������������������������� 

𝑍𝑍𝑓𝑓 = 𝐴𝐴 ∙ 𝐵𝐵 + 𝐶𝐶 ∙ 𝐷𝐷 + 𝐹𝐹��������������������� 

𝑍𝑍 ⊕ 𝑍𝑍𝑓𝑓 = 1 → 𝐸𝐸 = 0 → 𝐹𝐹 = 1 →  𝐴𝐴 ∙ 𝐵𝐵 + 𝐶𝐶 ∙ 𝐷𝐷 = 0 

∴ (𝐴𝐴 𝐵𝐵 𝐶𝐶 𝐷𝐷)
= (0 0 0 0), (0 0 0 1), (0 0 1 0), (0 1 0 0 ), (0 1 0 1), (0 1 1 0), (1 0 0 0), (1 0 0 1), (1 0 1 0) 

And 

(𝐸𝐸 𝐹𝐹) = (0 1) 

 

 

 

 

 



Problem #2 (Static CMOS gates, 10 points) 

Describe the function of the following circuit in as much detail as possible (𝐷𝐷: data input, 
𝐶𝐶𝐶𝐶: clock). 

 

(Partovi, ISSCC’96) 

Suppose X is the node driving the pFET and the nFET in the second stage and Y is the 
node driving the first inverter. 

• When CK=0. 
o If D=0, X is 1 due to the pFETs in the first stage. => Y=0 => Q=0. 
o If D=1, X is 0 due to the nFET in the first stage. => Y=1 => Q=1. 
o Thus, Q=D if CK=0. 

• When CK=1. 
o Y is floating, i.e., it holds the previous value regardless of D. 

Thus, this is an active-low D-latch (i.e., a D-latch in which Q=D when CK=0). 

 

 

 

 

 

 

 

 

 



Problem #3 (Timing Analysis, 10 points) 

Answer the following questions. 

• WNS can be less than TNS (i.e., “WNS<TNS” can happen). (True/False) 

𝑇𝑇𝑇𝑇𝑇𝑇 = ∑𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑁𝑁𝑁𝑁) = 𝑊𝑊𝑊𝑊𝑊𝑊 + ∑ 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁≠𝑊𝑊𝑊𝑊𝑊𝑊 . ∑ 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁≠𝑊𝑊𝑊𝑊𝑊𝑊 ≤ 0, so 𝑇𝑇𝑇𝑇𝑇𝑇 ≤ 𝑊𝑊𝑊𝑊𝑊𝑊. 

• TNS can be less than WNS (i.e., “TNS<WNS” can happen). (True/False) 

 

• WNS can be equal to TNS (i.e., “WNS=TNS” can happen). (True/False) 

 

• A design has only two violating paths. In this case, the following can happen. 
(True/False) 

o “WNS of the design is -2ns and TNS of the design is -4.5ns. 

In this case, 𝑇𝑇𝑇𝑇𝑇𝑇 = 𝑊𝑊𝑊𝑊𝑊𝑊1 + 𝑊𝑊𝑊𝑊𝑊𝑊2 where 𝑊𝑊𝑊𝑊𝑊𝑊1 is the negative slack of the first critical 
path and 𝑊𝑊𝑊𝑊𝑊𝑊2 is the negative slack of the second critical path (𝑊𝑊𝑊𝑊𝑊𝑊1 ≤ 𝑊𝑊𝑊𝑊𝑊𝑊2). 
𝑇𝑇𝑇𝑇𝑇𝑇 = −4.5𝑛𝑛𝑛𝑛 = 𝑊𝑊𝑊𝑊𝑊𝑊1 + 𝑊𝑊𝑊𝑊𝑊𝑊2 = −2𝑛𝑛𝑛𝑛 + 𝑊𝑊𝑊𝑊𝑊𝑊2, so 𝑊𝑊𝑊𝑊𝑊𝑊2 is −2.5𝑛𝑛𝑛𝑛, but this is a 
contradiction because 𝑊𝑊𝑊𝑊𝑊𝑊1 should be less than or equal to 𝑊𝑊𝑊𝑊𝑊𝑊2. Thus, this cannot 
happen. 

• A design has only four violating paths. In this case, the following can happen. 
(True/False) 

o “WNS of the design is -2ns and TNS of the design is -8.2ns. 

𝑊𝑊𝑊𝑊𝑊𝑊1 = −2𝑛𝑛𝑛𝑛 ≤ 𝑊𝑊𝑊𝑊𝑊𝑊2 ≤ 𝑊𝑊𝑊𝑊𝑊𝑊3 ≤ 𝑊𝑊𝑊𝑊𝑊𝑊4. Thus, 𝑇𝑇𝑇𝑇𝑇𝑇 = ∑𝑊𝑊𝑊𝑊𝑊𝑊 ≥ −8𝑛𝑛𝑛𝑛, so 𝑇𝑇𝑇𝑇𝑇𝑇 cannot 
be -8.2ns. 

 

 

 

 

 

 

 



Problem #4 (Timing Analysis, 10 points) 

You are given six designs, (a), (b), …, (f). Their timing analysis results are shown below. 
It is also known that the power consumption and the total layout area of a design are 
proportional to the total positive slack. You are supposed to choose a design and send it 
to a foundry for fabrication without any further optimization. Choose one among the six 
designs and explain why you decided to choose the design for fabrication. 

 

I would choose (b) for the following reasons. 

 Timing Power Area 
(a) Violated   
(b)  Low Small 
(c)  High Large 
(d) Violated   
(e) Violated   
(f) Violated   

 



Problem #5 (Interconnect Optimization, 30 points) 

The following figure shows a net optimized by buffer insertion. The driver and the sink 
are denoted by 𝐾𝐾𝐷𝐷 and 𝐾𝐾𝑆𝑆, respectively, and the inserted buffers are denoted by 𝐵𝐵𝑖𝑖 
(1 ≤ 𝑖𝑖 ≤ 𝑛𝑛 − 1). 𝑛𝑛 ≥ 2, i.e., there is at least one buffer between the driver and the sink. 

 

• Output resistance of 𝐾𝐾𝐷𝐷: 𝑅𝑅𝐷𝐷 
• Output resistance of 𝐵𝐵𝑖𝑖 (1≤ 𝑖𝑖 ≤ 𝑛𝑛 − 1): 𝑅𝑅𝑖𝑖 (e.g., 𝑅𝑅1,𝑅𝑅2, …) 
• Input capacitance of 𝐾𝐾𝑆𝑆: 𝐶𝐶𝑆𝑆 
• Input capacitance of 𝐵𝐵𝑖𝑖 (1≤ 𝑖𝑖 ≤ 𝑛𝑛 − 1): 𝐶𝐶𝑖𝑖 
• Delay of 𝐵𝐵𝑖𝑖 (1 ≤ 𝑖𝑖 ≤ 𝑛𝑛 − 1): 𝐷𝐷𝑖𝑖 
• Length of the 𝑖𝑖-th net (1 ≤ 𝑖𝑖 ≤ 𝑛𝑛): 𝑠𝑠𝑖𝑖 (um) 
• ∑ 𝑠𝑠𝑖𝑖𝑛𝑛

𝑖𝑖=1 = 𝐿𝐿 (um) 
• Wire unit resistance: 𝑟𝑟 (Ω/um) 
• Wire unit capacitance: 𝑐𝑐 (fF/um) 

We assume that the net is optimized to minimize the delay from the driver to the sink. 

 

(Hint: Derive 𝑠𝑠1 and 𝑠𝑠2 as functions of the above parameters when 𝑛𝑛 = 2. You can 
somehow use the result for the following questions). 

 

Suppose 𝑅𝑅𝐷𝐷 = 𝑅𝑅0 and 𝐶𝐶𝑆𝑆 = 𝐶𝐶𝑛𝑛. Then, the delay of segment 𝑠𝑠𝑘𝑘 is 

𝜏𝜏𝑘𝑘 = 𝑅𝑅𝑘𝑘−1(𝑐𝑐 ∙ 𝑠𝑠𝑘𝑘 + 𝐶𝐶𝑘𝑘) + 𝑟𝑟 ∙ 𝐶𝐶𝑘𝑘 ∙ 𝑠𝑠𝑘𝑘 +
1
2
𝑟𝑟𝑟𝑟𝑠𝑠𝑘𝑘2 

Then, the total delay is 

𝜏𝜏 = �𝜏𝜏𝑘𝑘

𝑛𝑛

𝑘𝑘=1

+ �𝐷𝐷𝑘𝑘

𝑛𝑛−1

𝑘𝑘=1

= 𝑐𝑐�𝑅𝑅𝑘𝑘−1𝑠𝑠𝑘𝑘

𝑛𝑛

𝑘𝑘=1

+ �𝑅𝑅𝑘𝑘−1𝐶𝐶𝑘𝑘

𝑛𝑛

𝑘𝑘=1

+ 𝑟𝑟�𝐶𝐶𝑘𝑘𝑠𝑠𝑘𝑘

𝑛𝑛

𝑘𝑘=1

+
1
2
𝑟𝑟𝑟𝑟�𝑠𝑠𝑘𝑘2

𝑛𝑛

𝑘𝑘=1

+ �𝐷𝐷𝑘𝑘

𝑛𝑛−1

𝑘𝑘=1

 

𝜕𝜕𝜕𝜕
𝜕𝜕𝑠𝑠𝑘𝑘

= 𝑐𝑐(𝑅𝑅𝑘𝑘−1 − 𝑅𝑅𝑛𝑛−1) + 𝑟𝑟(𝐶𝐶𝑘𝑘 − 𝐶𝐶𝑛𝑛) + 𝑟𝑟𝑟𝑟(𝑠𝑠𝑘𝑘 − 𝑠𝑠𝑛𝑛) = 0 

∴ 𝑠𝑠𝑘𝑘 = 𝑠𝑠𝑛𝑛 +
𝑅𝑅𝑛𝑛−1 − 𝑅𝑅𝑘𝑘−1

𝑟𝑟
+
𝐶𝐶𝑛𝑛 − 𝐶𝐶𝑘𝑘

𝑐𝑐
 



From ∑ 𝑠𝑠𝑘𝑘𝑛𝑛
𝑘𝑘=1 = 𝐿𝐿, ∑ 𝑠𝑠𝑘𝑘𝑛𝑛

𝑘𝑘=1 = 𝑛𝑛 ∙ 𝑠𝑠𝑛𝑛 + 1
𝑟𝑟
∑ (𝑅𝑅𝑛𝑛−1 − 𝑅𝑅𝑘𝑘−1)𝑛𝑛
𝑘𝑘=1 + 1

𝑐𝑐
∑ (𝐶𝐶𝑛𝑛 − 𝐶𝐶𝑘𝑘)𝑛𝑛
𝑘𝑘=1 = 𝑛𝑛 ∙ 𝑠𝑠𝑛𝑛 +

𝑛𝑛∙𝑅𝑅𝑛𝑛−1−𝑅𝑅𝑇𝑇
𝑟𝑟

+ 𝑛𝑛∙𝐶𝐶𝑛𝑛−𝐶𝐶𝑇𝑇
𝑐𝑐

= 𝐿𝐿 where 𝑅𝑅𝑇𝑇 = ∑ 𝑅𝑅𝑘𝑘𝑛𝑛−1
𝑘𝑘=0  and 𝐶𝐶𝑇𝑇 = ∑ 𝐶𝐶𝑘𝑘𝑛𝑛

𝑘𝑘=1 . 

Thus, we obtain the following: 

𝑠𝑠𝑘𝑘 =
𝐿𝐿
𝑛𝑛

+
1
𝑟𝑟
∙ �

1
𝑛𝑛
∙ 𝑅𝑅𝑇𝑇 − 𝑅𝑅𝑘𝑘−1� +

1
𝑐𝑐
∙ �

1
𝑛𝑛
∙ 𝐶𝐶𝑇𝑇 − 𝐶𝐶𝑘𝑘� 

Answer the following questions for 𝑛𝑛 = 10 (i.e., we insert 9 buffers optimally): 

• If 𝐶𝐶𝑆𝑆 increases, we should increase 𝑠𝑠1 to minimize the total delay. (True/False) 
o If 𝐶𝐶𝑆𝑆 increases, the delay of 𝑠𝑠10 goes up, so we should increase 𝑠𝑠1, …, 𝑠𝑠9. 

• If 𝑅𝑅9 increases, we should increase 𝑠𝑠1 to minimize the total delay. (True/False) 
o If 𝑅𝑅9 increases, the delay of 𝑠𝑠9 goes up, so we should increase 𝑠𝑠1, …, 

𝑠𝑠8, 𝑠𝑠10. 
• If 𝐷𝐷9 increases, we should increase 𝑠𝑠1 to minimize the total delay. (True/False) 

o Since we always insert 9 buffers, 𝐷𝐷9 does not affect the total delay. 
• If 𝐶𝐶5 increases, we should increase 𝑠𝑠8 to minimize the total delay. (True/False) 

o True for the same reason as the case of 𝐶𝐶𝑆𝑆 ↑. 
• If 𝑅𝑅5 increases, we should increase 𝑠𝑠8 to minimize the total delay. (True/False) 

o True for the same reason as the case of 𝑅𝑅9 ↑. 
• If 𝐷𝐷5 increases, we should increase 𝑠𝑠8 to minimize the total delay. (True/False) 

o False for the same reason as the case of 𝐷𝐷9 ↑. 
• If 𝑅𝑅𝐷𝐷 increases, we should increase 𝑠𝑠1 to minimize the total delay. (True/False) 

o If 𝑅𝑅𝐷𝐷(𝑅𝑅0) increases, the delay of 𝑠𝑠1 goes up, so we should increase 𝑠𝑠2, …, 
, 𝑠𝑠10. 

• Suppose 𝑠𝑠1 ≈ 0 because 𝑅𝑅𝐷𝐷 ≫ 𝑅𝑅1, … ,𝑅𝑅9. In this case, if 𝑟𝑟 and 𝑐𝑐 increase at the 
same time, we should increase  𝑠𝑠1 to minimize the total delay. (True/False) 

o If 𝑟𝑟 → ∞ and 𝑐𝑐 → ∞, the impact of output resistance and input capacitance 
on the delay reduces. In this case, the impact of the wire delay portion 
(1
2
𝑟𝑟𝑟𝑟𝑙𝑙2) goes up, so we should evenly distribute the buffers to minimize the 

total delay. Since 𝑠𝑠1 was almost 0, we should increase 𝑠𝑠1. 

 

Answer the following questions assuming 𝑛𝑛 is to be determined optimally (i.e., we find # 
buffers (𝑛𝑛 − 1) and 𝑠𝑠1~𝑠𝑠𝑛𝑛 optimally) and 𝐿𝐿 ≫ 0, so 𝑛𝑛 ≫ 1: 

• If 𝑅𝑅𝐷𝐷 increases, we should increase 𝑛𝑛 to minimize the total delay. (True/False) 
o In this case, 𝑠𝑠1 should be decreased to reduce the total delay, which 

increases 𝑠𝑠1, …, 𝑠𝑠𝑛𝑛. Thus, we should insert more buffers in general. 



• If 𝐶𝐶2 increases, we should increase 𝑛𝑛 to minimize the total delay. (True/False) 
o In this case, we should decrease 𝑠𝑠2 and increase all the other 𝑠𝑠𝑘𝑘. If their 

lengths go up, we should insert more buffers. 
• If 𝐶𝐶𝑆𝑆 increases, we should increase 𝑛𝑛 to minimize the total delay. (True/False) 

o We should insert more buffers for the same reason as the case 𝐶𝐶𝑆𝑆 
increases. 

• If the delay of each buffer is increased, we should generally increase 𝑛𝑛 to 
minimize the total delay. (True/False) 

o We should decrease the number of buffers because the buffer delay has 
negative impact on the total delay. 

• If 𝐿𝐿 increases, we should increase 𝑛𝑛 to minimize the total delay. (True/False) 
• If 𝑟𝑟 increases, we should increase 𝑛𝑛 to minimize the total delay. (True/False) 

o The total delay when there is no buffer is  
𝜏𝜏 = 𝑅𝑅𝐷𝐷(𝑐𝑐 ∙ 𝐿𝐿 + 𝐶𝐶𝑆𝑆) + 𝑟𝑟 ∙ 𝐿𝐿 ∙ 𝐶𝐶𝑆𝑆 + 1

2
𝑟𝑟𝑟𝑟𝐿𝐿2. 

o In this formula, 𝑟𝑟 can be treated as weighting factors for 𝐿𝐿 ∙ 𝐶𝐶𝑆𝑆 and 1
2
𝑐𝑐𝐿𝐿2. If 

𝑟𝑟 increases, inserting more buffers can reduce 1
2
𝑟𝑟𝑟𝑟𝐿𝐿2. For example, if a 

buffer is inserted, the sum of the values is 1
2
𝑟𝑟𝑟𝑟(0.25𝐿𝐿2 + 0.25𝐿𝐿2) = 1

4
𝑟𝑟𝑟𝑟𝐿𝐿2. 

Similarly, if three buffers are inserted, the sum of the values is 1
2
𝑟𝑟𝑟𝑟(𝐿𝐿2/

16 + 𝐿𝐿2/16 + 𝐿𝐿2/16 + 𝐿𝐿2/16) = 1
8
𝑟𝑟𝑟𝑟𝐿𝐿2. Although the buffer delays and 

buffer input capacitance values are delay overheads, if 𝑟𝑟 increases 
significantly, inserting more buffers helps reduce the delay as shown 
above. 

• If 𝑐𝑐 increases, we should increase 𝑛𝑛 to minimize the total delay. (True/False) 
o 𝑟𝑟 and 𝑐𝑐 basically have similar impacts on the total delay, so if 𝑐𝑐 goes up, 

we should insert more buffers. 

 

 

 

 

 

 

 

 



Problem #6 (Timing Analysis, 10 points) 

 

 

● Setup time of a D-FF: 𝑇𝑇s 
● Hold time of a D-FF: 𝑇𝑇ℎ 
● D-F/F internal delay: 𝑇𝑇𝐶𝐶𝐶𝐶 
● Logic 1 delay: 𝑇𝑇𝐿𝐿1 
● Logic 2 delay: 𝑇𝑇𝐿𝐿2 
● Clock period: 𝑇𝑇𝐶𝐶𝐶𝐶 (duty cycle: 50%, i.e., the clock is high for 𝑇𝑇𝐶𝐶𝐶𝐶/2 and low for 

𝑇𝑇𝐶𝐶𝐶𝐶/2.) 
● Delay from CLK to D-FF 1: 𝐷𝐷1 
● Delay from CLK to D-FF 2: 𝐷𝐷2 
● Delay from CLK to D-FF 3: 𝐷𝐷3 
● D-F/F 2 is a negative-edge FF (i.e., it captures the input signal at falling edges.) 

The above figure shows three FFs connects in series. D-FF 2 is a negative-edge FF, 
whereas D-FF 1 and 3 are positive-edge FFs. The operation of the circuit is as follows. 
D-FF 1 captures its input signal at 𝑘𝑘-th positive clock edge 𝑃𝑃𝑘𝑘. Logic 1 performs 
computation for the output of D-FF 1. D-FF 2 captures its input signal at 𝑘𝑘-th negative 
clock edge 𝑁𝑁𝑘𝑘. Logic 2 performs computation for the output of D-FF2. D-FF 3 captures 
its input signal at (𝑘𝑘 + 1)-th positive clock edge 𝑃𝑃𝑘𝑘+1. 

Derive two setup time inequalities (one for Logic 1 and the other for Logic 2). 

1) For Logic 1, 𝐷𝐷1 + 𝑇𝑇𝐶𝐶𝐶𝐶 + 𝑇𝑇𝐿𝐿1 ≤ 𝐷𝐷2 + 𝑇𝑇𝐶𝐶𝐶𝐶
2
− 𝑇𝑇𝑠𝑠  ⟹ 𝑇𝑇𝐿𝐿1 ≤ (𝐷𝐷2 − 𝐷𝐷1) + 𝑇𝑇𝐶𝐶𝐶𝐶

2
− 𝑇𝑇𝐶𝐶𝐶𝐶 − 𝑇𝑇𝑠𝑠 



2) For Logic 2, 𝐷𝐷2 + 𝑇𝑇𝐶𝐶𝐶𝐶
2

+ 𝑇𝑇𝐶𝐶𝐶𝐶 + 𝑇𝑇𝐿𝐿2 ≤ 𝐷𝐷3 + 𝑇𝑇𝐶𝐶𝐶𝐶 − 𝑇𝑇𝑠𝑠  ⟹ 𝑇𝑇𝐿𝐿2 ≤ (𝐷𝐷3 − 𝐷𝐷2) + 𝑇𝑇𝐶𝐶𝐶𝐶
2
−

𝑇𝑇𝐶𝐶𝐶𝐶 − 𝑇𝑇𝑠𝑠 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Problem #7 (Testing, 10 points) 

We want to detect stuck-at-0 and stuck-at-1 faults at all the primary inputs, 𝑎𝑎, 𝑏𝑏, 𝑐𝑐,𝑑𝑑, and 
the two internal nodes, 𝑒𝑒,𝑓𝑓. Computation of 𝑌𝑌 to detect a stuck-at-0/1 fault at an internal 
node can be done by setting the value of the node to constant 0 (for stuck-at-0 faults) or 
1 (for stuck-at-1 faults). Find a minimal set of test vectors that can detect all the s-a-0 
and s-a-1 faults at 𝑎𝑎, 𝑏𝑏, 𝑐𝑐,𝑑𝑑, 𝑒𝑒, and 𝑓𝑓 for the following logic (Hint: all the minimal sets 
have five test vectors). 

 

𝑌𝑌 = (𝑎𝑎 ⊕ 𝑏𝑏) ∙ 𝑐𝑐 + 𝑑𝑑������� 

• s-a-0 at 𝑎𝑎: 𝑌𝑌𝑓𝑓 = 𝑏𝑏 ∙ 𝑐𝑐 + 𝑑𝑑�������.𝑌𝑌 ⊕ 𝑌𝑌𝑓𝑓 = �(𝑎𝑎 ⊕ 𝑏𝑏) ∙ 𝑐𝑐 + 𝑑𝑑�������� ⊕ �𝑏𝑏 ∙ 𝑐𝑐 + 𝑑𝑑�������� = 1 ⇒
  (𝑎𝑎 𝑏𝑏 𝑐𝑐 𝑑𝑑) = (1 0 0 0) or (1 1 0 0) 

• s-a-1 at 𝑎𝑎: 𝑌𝑌𝑓𝑓 = 𝑏𝑏� ∙ 𝑐𝑐 + 𝑑𝑑�������.𝑌𝑌 ⊕ 𝑌𝑌𝑓𝑓 = �(𝑎𝑎 ⊕ 𝑏𝑏) ∙ 𝑐𝑐 + 𝑑𝑑�������� ⊕ �𝑏𝑏� ∙ 𝑐𝑐 + 𝑑𝑑�������� = 1 ⇒
  (𝑎𝑎 𝑏𝑏 𝑐𝑐 𝑑𝑑) = (0 0 0 0) or (0 1 0 0) 

• s-a-0 at 𝑏𝑏: (𝑎𝑎 𝑏𝑏 𝑐𝑐 𝑑𝑑) = (0 1 0 0) or (1 1 0 0) 
• s-a-1 at 𝑏𝑏: (𝑎𝑎 𝑏𝑏 𝑐𝑐 𝑑𝑑) = (0 0 0 0) or (1 0 0 0) 
• s-a-0 at 𝑐𝑐: 𝑌𝑌𝑓𝑓 = (𝑎𝑎 ⊕ 𝑏𝑏) ∙ 𝑑̅𝑑.𝑌𝑌 ⊕ 𝑌𝑌𝑓𝑓 = �(𝑎𝑎 ⊕ 𝑏𝑏) ∙ 𝑐𝑐 + 𝑑𝑑�������� ⊕ �(𝑎𝑎 ⊕ 𝑏𝑏) ∙ 𝑑̅𝑑� = 1 ⇒

  (𝑎𝑎 𝑏𝑏 𝑐𝑐 𝑑𝑑) = (0 1 1 0) or (1 0 1 0) 
• s-a-1 at 𝑐𝑐: 𝑌𝑌𝑓𝑓 = 0.𝑌𝑌 ⊕ 𝑌𝑌𝑓𝑓 = �(𝑎𝑎 ⊕ 𝑏𝑏) ∙ 𝑐𝑐 + 𝑑𝑑�������� ⊕ 0 = 1 ⇒   (𝑎𝑎 𝑏𝑏 𝑐𝑐 𝑑𝑑) = (0 1 0 0) or 

(1 0 0 0) 
• s-a-0 at 𝑑𝑑: (𝑎𝑎 𝑏𝑏 𝑐𝑐 𝑑𝑑) = (0 1 0 1) or (1 0 0 1) 
• s-a-1 at 𝑑𝑑: (𝑎𝑎 𝑏𝑏 𝑐𝑐 𝑑𝑑) = (0 1 0 0) or (1 0 0 0) 
• s-a-0 at 𝑒𝑒: 𝑌𝑌𝑓𝑓 = 0.𝑌𝑌 ⊕ 𝑌𝑌𝑓𝑓 = �(𝑎𝑎 ⊕ 𝑏𝑏) ∙ 𝑐𝑐 + 𝑑𝑑�������� ⊕ 0 = 1 ⇒   (𝑎𝑎 𝑏𝑏 𝑐𝑐 𝑑𝑑) = (0 1 0 0) or 

(1 0 0 0) 
• s-a-1 at 𝑒𝑒: 𝑌𝑌𝑓𝑓 = 𝑐𝑐 + 𝑑𝑑�������.𝑌𝑌 ⊕ 𝑌𝑌𝑓𝑓 = �(𝑎𝑎 ⊕ 𝑏𝑏) ∙ 𝑐𝑐 + 𝑑𝑑�������� ⊕ {𝑐𝑐 + 𝑑𝑑�������} = 1 ⇒   (𝑎𝑎 𝑏𝑏 𝑐𝑐 𝑑𝑑) =

(0 0 0 0) or (1 1 0 0) 
• s-a-0 at 𝑓𝑓: 𝑌𝑌𝑓𝑓 = 0.𝑌𝑌 ⊕ 𝑌𝑌𝑓𝑓 = �(𝑎𝑎 ⊕ 𝑏𝑏) ∙ 𝑐𝑐 + 𝑑𝑑�������� ⊕ 0 = 1 ⇒   (𝑎𝑎 𝑏𝑏 𝑐𝑐 𝑑𝑑) = (0 1 0 0) or 

(1 0 0 0) 
• s-a-1 at 𝑓𝑓: 𝑌𝑌𝑓𝑓 = (𝑎𝑎 ⊕ 𝑏𝑏).𝑌𝑌 ⊕ 𝑌𝑌𝑓𝑓 = �(𝑎𝑎 ⊕ 𝑏𝑏) ∙ 𝑐𝑐 + 𝑑𝑑�������� ⊕ {(𝑎𝑎 ⊕ 𝑏𝑏)} = 1 ⇒

  (𝑎𝑎 𝑏𝑏 𝑐𝑐 𝑑𝑑) = (0 1 0 1) or (0 1 1 0) or (0 1 1 1) or (1 0 0 1) or (1 0 1 0) or (1 0 1 1) 

 



 

1) Need (0 1 0 1) to cover the 7th column. It also covers the 9th column. 
2) Covering the 1st column requires either (1 0 0 0) or (1 1 0 0). 
3) Covering the 2nd column requires either (0 0 0 0) or (0 1 0 0). 
4) For (1 0 0 0) and (0 0 0 0), we should cover the 3rd and the 5th columns. 
5) If we proceed this way, we get the following test vectors. 

 

 

 

 

 



Problem #8 (Testing, 10 points) 

A combinational logic 𝐺𝐺 is given. It has 𝑛𝑛 inputs and one output. The inputs are 
𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛 (𝑛𝑛 ≥ 2) and the output is 𝑦𝑦, i.e., 𝑦𝑦 = 𝐺𝐺(𝑥𝑥1, … , 𝑥𝑥𝑛𝑛). To find an input vector that 
can detect a stuck-at-𝑣𝑣 fault (𝑣𝑣 = 0 or 1) at 𝑥𝑥𝑖𝑖 (1 ≤ 𝑖𝑖 ≤ 𝑛𝑛), we solve 𝐺𝐺(𝑥𝑥1, … , 𝑥𝑥𝑛𝑛) ⊕
𝐺𝐺𝑓𝑓(𝑥𝑥1, … , 𝑥𝑥𝑖𝑖 = 𝑣𝑣, … , 𝑥𝑥𝑛𝑛) = 1. Let 𝑆𝑆𝑖𝑖 be the set of all input vectors that can detect a stuck-
at-𝑣𝑣𝑖𝑖 (𝑣𝑣𝑖𝑖 = 0 or 1) fault at 𝑥𝑥𝑖𝑖 and 𝑆𝑆𝑘𝑘 be the set of all input vectors that can detect a stuck-
at-𝑣𝑣𝑘𝑘 (𝑣𝑣𝑘𝑘 = 0 or 1) fault at 𝑥𝑥𝑘𝑘 (𝑖𝑖 ≠ 𝑘𝑘). 

If we assume that two stuck-at-𝑣𝑣 faults occur at the same time, we can find an input 
vector that can detect the faults. For example, we solve 𝐺𝐺(𝑥𝑥1, … , 𝑥𝑥𝑛𝑛) ⊕𝐺𝐺𝑓𝑓(𝑥𝑥1, … , 𝑥𝑥𝑖𝑖 =
𝑣𝑣𝑖𝑖 , … , 𝑥𝑥𝑘𝑘 = 𝑣𝑣𝑘𝑘, … , 𝑥𝑥𝑛𝑛) = 1 to find an input vector that can detect a stuck-at-𝑣𝑣𝑖𝑖 fault at 𝑥𝑥𝑖𝑖 
and a stuck-at-𝑣𝑣𝑘𝑘 fault at 𝑥𝑥𝑘𝑘 occurring at the same time (𝑖𝑖 ≠ 𝑘𝑘). Let 𝑆𝑆𝑖𝑖,𝑘𝑘 be the set of all 
input vectors that can detect a stuck-at-𝑣𝑣𝑖𝑖 (𝑣𝑣𝑖𝑖 = 0 or 1) fault at 𝑥𝑥𝑖𝑖 and a stuck-at-
𝑣𝑣𝑘𝑘 (𝑣𝑣𝑘𝑘 = 0 or 1) fault at 𝑥𝑥𝑘𝑘 (𝑖𝑖 ≠ 𝑘𝑘). 

Prove or disprove the following statement: 

𝑆𝑆𝑖𝑖,𝑘𝑘 = 𝑆𝑆𝑖𝑖 ∩ 𝑆𝑆𝑘𝑘 

(If you want to disprove it, you can just show a counterexample.) 

Counterexample: A two-input AND gate (inputs: a, b, output: Z). 

𝑍𝑍 = 𝑎𝑎 ∙ 𝑏𝑏 

Let a s-a-0 fault at input 𝑎𝑎 be 𝑓𝑓𝑎𝑎 and a s-a-1 fault at input 𝑏𝑏 be 𝑓𝑓𝑏𝑏. For 𝑓𝑓𝑎𝑎, 𝑍𝑍𝑓𝑓 = 0, so 
𝑆𝑆𝑎𝑎 = {(𝑎𝑎, 𝑏𝑏) = (1 1)}. For 𝑓𝑓𝑏𝑏, 𝑍𝑍𝑓𝑓 = 𝑎𝑎, so 𝑆𝑆𝑏𝑏 = {(𝑎𝑎, 𝑏𝑏) = (1 0)}. 𝑆𝑆𝑎𝑎 ∩ 𝑆𝑆𝑏𝑏 = ∅. 

When the two faults occur at the same time, 𝑍𝑍𝑓𝑓 = 0. In this case, 𝑆𝑆𝑎𝑎,𝑏𝑏 = {(𝑎𝑎, 𝑏𝑏) = (1 1)}. 
Thus, 𝑆𝑆𝑎𝑎,𝑏𝑏 ≠ 𝑆𝑆𝑎𝑎 ∩ 𝑆𝑆𝑏𝑏. 

 

 

 

 

 

 

 


