EE434

ASIC and Digital Systems

Midterm Exam 2
 Mar. 31, 2017. (4:10pm - 5pm)
 Instructor: Dae Hyun Kim (daehyun@eecs.wsu.edu)

Name:

WSU ID:

Problem	Points	
1	10	
2	10	
3	10	
4	10	
5	10	
Total	50	

* Allowed: Textbooks, cheat sheets, class notes, notebooks, calculators, watches
* Not allowed: Electronic devices (smart phones, tablet PCs, laptops, etc.) except calculators and watches

Problem \#1 (Layout, 10 points).

Represent Out as a Boolean function of A, B, C, D, E, F.

Problem \#2 (DC Characteristics, 10 points).

An infinite chain of inverters is defined as follows:

All the inverters are identical, i.e., have the same characteristics. The above chain is modeled as a block diagram as follows:

where Noise k is the k-th noise and Source is a signal generator and $V_{\text {Source }}=V_{D D} \cdot u(t)$ (i.e., 0 if $t<0$ and $V_{D D}$ if $t \geq 0$). $V_{D D}=1 V$. The DC characteristic of an inverter is approximated using three segments as follows (If $V_{\text {in }} \geq V_{D D}, V_{\text {out }}=0$. If $V_{\text {in }} \leq 0, V_{\text {out }}=$ $V_{D D}$.):

1) $\boldsymbol{V}_{\text {out }}=\frac{V_{O H}-V_{D D}}{V_{I L}} \cdot \boldsymbol{V}_{\text {in }}+V_{D D}$
2) $\boldsymbol{V}_{\text {out }}=\frac{V_{O L}-V_{O H}}{V_{I H}-V_{I L}} \cdot\left(\boldsymbol{V}_{\text {in }}-V_{I H}\right)+V_{O L}$
3) $\boldsymbol{V}_{\text {out }}=-\frac{V_{O L}}{V_{D D}-V_{I H}} \cdot\left(\boldsymbol{V}_{\text {in }}-V_{D D}\right)$

Each noise source is an independent voltage signal and its range is as follows ($V_{N}>0$):

- $\left|V_{\text {noise }}\right| \leq V_{N}$

Compute the max. value of V_{N} that does not cause signal inversion for the following two cases (Note: Signal inversion occurs if a signal reaches 0.5 V when it should be 0 or 1):

- Case 1) $V_{O L}=0 V, V_{O H}=1 V, V_{I L}=0.4 V, V_{I H}=0.6 \mathrm{~V}$
- Case 2) $V_{O L}=0 V, V_{O H}=1 V, V_{I L}=0.4 V, V_{I H}=0.8 V$

Case 1) In this case, $y=-5 x+3$ in Region 2. The high noise margin is 0.4 V , so is the low noise margin. Suppose V_{N} is $(0.4+\delta) V$ where $\delta>0$. Let's take at a look at the worst cases.

- Input of inverter m: 1V
- Output of inverter m: OV
- Input of inverter $(m+1):(\mathbf{0 . 4}+\boldsymbol{\delta}) \boldsymbol{V}$ II $\boldsymbol{a}(\boldsymbol{n})=\mathbf{0 . 4 + \boldsymbol { b } (\boldsymbol { n })}$
- Output of inverter $(\mathrm{m}+1):(1.0-5 \delta) V / /-5 a(n)+3=1-5 b(n)$
- Input of inverter $(\mathrm{m}+2)$: $(0.6-6 \delta) V / /-5 a(n)+2.6-\delta=0.6-5 b(n)-\delta$
- Output of inverter $(\mathrm{m}+2):(30 \delta) V / / 25 a(n)-10+5 \delta=25 b(n)+5 \delta$
- Input of inverter $(\mathrm{m}+3):(0.4+31 \delta) V$ II $\boldsymbol{a}(\boldsymbol{n}+1)=25 \boldsymbol{a}(n)-9.6+6 \delta=0.4+$ $25 b(n)+6 \delta->b(n+1)=25 b(n)+6 \delta, a(n+1)=0.4+b(n+1)$
- ...
$a(n+1)=0.4+b(n+1)$ and $b(n+1)=25 b(n)+6 \delta$. Since $b(n)$ goes to infinity as n increases, so signal inversion happens.

If V_{N} is 0.4 V

- Input of inverter m: 1V
- Output of inverter m: OV
- Input of inverter (m+1): 0.4V
- Output of inverter $(\mathrm{m}+1): 1 \mathrm{~V}$
- Input of inverter $(\mathrm{m}+2): 0.6 \mathrm{~V}$
- Output of inverter $(\mathrm{m}+2): 0 \mathrm{~V}$
- Input of inverter (m+3): 0.4V
- ...

Thus, if $\delta>0$, signal inversion will eventually occur no matter how small δ is. Thus, the maximum V_{N} is $\underline{0.4 V}$ in this case.

Case 2) In this case, $y=-2.5 x+2$ in Region 2. When the output is 0.4 V , the input voltage is 0.64 V . Suppose V_{N} is $X(V)$ where X is between 0.2 V and 0.4 V . Let's take at a look at the worst cases.

- Input of inverter m: 1V
- Output of inverter m: 0V
- Input of inverter $(m+1): \boldsymbol{X}(\boldsymbol{V})$
- Output of inverter $(\mathrm{m}+1): 1 \mathrm{~V}$
- Input of inverter $(\mathrm{m}+2):(1-X) V$
- Output of inverter $(\mathrm{m}+2):(-0.5+2.5 \mathrm{X}) \mathrm{V}$
- Input of inverter $(\mathrm{m}+3)$: $(-\mathbf{0 . 5}+\mathbf{3 . 5 X}) \boldsymbol{V}$

If $(-\mathbf{0 . 5}+\mathbf{3 . 5 X}) \boldsymbol{V}$ is greater than 0.4 V , the output voltage is less than 1 V , then a positive feedback loop is formed, so we solve the following inequality:

$$
(-0.5+3.5 X) V \leq 0.4 V
$$

Thus, $\underline{V}_{N} \approx 0.257 V$.

Problem \#3 (Elmore Delay, 10 points).

The RC tree shown below has two delay constraints as follows:

- The delay from the driver to $V_{L 1}$ should be less than or equal to 900 ps .
- The delay from the driver to $V_{L 2}$ should be less than or equal to $6823 p s$.

Currently, the delay at $V_{L 1}$ is $1 k * 11 f+1 k * 12 f+\cdots+1 k * 29 f+1 k * 59 f+1 k *$ $60 f+\cdots+1 k * 79 f=1829 p s$, so is the delay at $V_{L 2}$.

You are supposed to insert only one buffer in the RC tree to satisfy the delay constraints at both $V_{L 1}$ and $V_{L 2}$. You can insert the buffer only into one of the designated nodes (n1 \sim n60). The buffer has the following characteristics:

- Input capacitance: $10 f F$
- Internal delay: 20ps
- Output resistance: $1 k \Omega$

When you insert a buffer into a node, the RC tree before and after the buffer are separated as follows (assuming the buffer is inserted into n 2 in the figure above):

In this case (inserting a buffer into n2), the delay at $V_{L 1}$ is $[1 k * 11 f+1 k * 12 f+\cdots+$ $1 k * 29 f+1 k * 59 f+1 k * 60 f+\cdots+1 k * 77 f+1 k * 77 f]+[20 p s]+[1 k * 11 f+1 k *$ $12 f]=(1749+20+23) p s=1792 p s$, so is the delay at $V_{L 2}$. As you see, the delay is reduced from $1829 p s$ to $1792 p s$.

Insert a buffer into one of the nodes $(n 1 \sim n 60)$ so that it satisfies the delay constraints at both $V_{L 1}$ and $V_{L 2}$. Then, compute the Elmore delay at $V_{L 1}$.
(Help: The sum of $a, a+1, a+2, \ldots, n$ is $\frac{(n+a)(n-a+1)}{2}$. For example, $5+6+\cdots+10=$ $\frac{(10+5)(10-5+1)}{2}=45$.)

If I insert a buffer into node n21, the delay at $V_{L 1}$ is

$$
\begin{aligned}
(1 k * 11 f+1 & k * 12 f+\cdots+1 k * 29 f+1 k * 29 f)+(20 p s) \\
& +(1 k * 40 f+1 k * 41 f+\cdots+1 k * 60 f) \\
& =(380 p s+29 p s)+(20 p s)+(1050 p s)=1479 p s
\end{aligned}
$$

If I insert a buffer into node n41, the delay at $V_{L 1}$ is

$$
\begin{gathered}
(1 k * 11 f+1 k * 12 f+\cdots+1 k * 29 f)+(1 k * 40 f+1 k * 41 f+\cdots+1 k * 60 f) \\
=(380 p s)+(1050 p s)=1430 p s
\end{gathered}
$$

If I insert a buffer into node n20, the delay at $V_{L 1}$ is

$$
\begin{aligned}
(1 k * 11 f+1 & * * 12 f+\cdots+1 k * 29 f)+(1 k * 59 f)+(1 k * 59 f)+(20 p s) \\
& +(1 k * 11 f+1 k * 12 f+\cdots+1 k * 30 f) \\
& =(380 p s)+(59 p s)+(59 p s)+(20 p s)+(410 p s)=928 p s
\end{aligned}
$$

If I insert a buffer into node n19, the delay at $V_{L 1}$ is

$$
\begin{gathered}
(1 k * 11 f+1 k * 12 f+\cdots+1 k * 29 f)+(1 k * 59 f)+(1 k * 60 f)+(1 k * 60 f)+(20 p s) \\
+(1 k * 11 f+1 k * 12 f+\cdots+1 k * 29 f) \\
=(380 p s)+(59 p s)+(60 p s)+(20 p s)+(380 p s)=\mathbf{8 9 9 p s}
\end{gathered}
$$

Node: n19
Elmore delay at $V_{L 1}: 899 \mathrm{ps}$

Problem \#4 (Pseudo-nMOS, 10 points).

Draw a pseudo-nMOS schematic for $Y=\overline{A \cdot B \cdot C+(D+E) \cdot F}$ and properly size the nFE Ts to achieve the following output level for logic output 0 :

- $V_{\text {out }} \leq 0.1 V_{D D}$

Use the following parameters:

- Resistance of a $1 \times \mathrm{nFET}=$ Resistance of a $2 \times \mathrm{pFET}$
- The size of the pFET: $4 \times$
- Do not use the transistor-mode-based computation for sizing. You can just use the resistance values for sizing.
- Do not oversize the nFETs.

The resistance of the pFET is $R_{n} / 2$ where the resistance of a 1X nFET is R_{n}. Suppose the resistance of an nFET path is R_{k}. Then, $R_{k} /\left(\frac{R_{n}}{2}+R_{k}\right) \leq 0.1$, so $R_{k} \leq \frac{1}{18} R_{n}$.

For $A=B=C=1$:

$$
3 \cdot R=\frac{1}{18} R_{n} \Rightarrow>=\frac{1}{54} R_{n} \Rightarrow>A=B=C=54 \times
$$

For $\mathrm{F}=1$ and (D or $\mathrm{E}=1$):

$$
2 \cdot R=\frac{1}{18} R_{n} \Rightarrow \quad R=\frac{1}{36} R_{n} \Rightarrow>D=E=F=36 \times
$$

Problem \#5 (Capacitive Coupling, 10 points).

The following figure models the coupling effect between two adjacent wires.

$V_{1}(t)$ is an aggressor and $V_{2}(t)$ is a victim. $V_{2}(t)$ is as follows:

$$
V_{2}(t)=\frac{V_{D D}}{2}\left[e^{-\frac{t}{\tau_{1}}}-e^{-\frac{t}{\tau_{2}}}\right] u(t)
$$

where

- $\tau_{1}=R\left(C+C_{L}+2 C_{C}\right)$
- $\tau_{2}=R\left(C+C_{L}\right)$

In this case, the max. value of $V_{2}(t)$ is found by differentiating $V_{2}(t)$ with respect to t. The max. value occurs when t is

$$
t_{\max }=\frac{R\left(C+C_{L}\right)\left(C+C_{L}+2 C_{C}\right)}{2} \cdot \ln \frac{C+C_{L}+2 C_{C}}{C+C_{L}}
$$

and the max. value of $V_{2}(t)$ is

$$
V_{2, \max }=\frac{V_{D D}}{2} \cdot\left(1-\frac{\tau_{2}}{\tau_{1}}\right) \cdot\left(\frac{\tau_{2}}{\tau_{1}}\right)^{\frac{\tau_{2}}{2 R C_{C}}}
$$

Answer the following questions (Hint: Use the above formula or your intuition to solve this problem):

- If C_{C} increases, $V_{2, \max }$ increases. (True/False)
- If C increases, $V_{2, \max }$ increases. (True/False)
- If C_{L} increases, $V_{2, \max }$ increases. (True/False)
- If R increases, $V_{2, \max }$ increases. (True/False)
- The max. value of $V_{2}(t)$ can be greater than $V_{D D} / 2$. (True/False)
(Hint: $\lim _{x \rightarrow \infty}\left(\frac{1}{x}\right)^{\frac{1}{x}}=1 . \lim _{x \rightarrow \infty}\left(\frac{x}{x+c}\right)^{\frac{x}{c}}=e .\left(\frac{x}{x+c}\right)^{\frac{x}{c}}>1 .($ when $c>0)$)

$$
\begin{gathered}
\boldsymbol{V}_{2, \max }=\frac{\boldsymbol{V}_{\boldsymbol{D} \boldsymbol{D}}}{2} \cdot\left(\mathbf{1}-\frac{\boldsymbol{C}+\boldsymbol{C}_{\boldsymbol{L}}}{\boldsymbol{C}+\boldsymbol{C}_{\boldsymbol{L}}+2 \boldsymbol{C}_{\boldsymbol{C}}}\right) \cdot\left(\frac{\boldsymbol{C}+\boldsymbol{C}_{\boldsymbol{L}}}{\boldsymbol{C}+\boldsymbol{C}_{\boldsymbol{L}}+2 \boldsymbol{C}_{\boldsymbol{C}}}\right)^{\frac{C+C_{\boldsymbol{L}}}{2 C_{C}}} \\
\left(1-\frac{C+C_{L}}{C+C_{L}+2 C_{C}}\right)=a, \frac{c+C_{L}}{C+C_{L}+2 C_{C}}=b, \text { and } \frac{C+C_{L}}{2 C_{C}}=d .
\end{gathered}
$$

- If C_{C} increases, a approaches 1 and b and d approach 0 , so b^{d} approaches 1 . Thus, $V_{2, \max }$ increases (approaches $\frac{V_{D D}}{2}$).
- If C increases, a approaches 0 and b^{d} approaches e, so $V_{2, \max }$ decreases (approaches 0).
- C_{L} and C are interchangeable, so if C_{L} increases, $V_{2, \max }$ decreases (approaches $0)$.
- $V_{2, \max }$ does not include R, so it does not increase even if R increases.
- $\quad a$ is less than 1 . b^{d} is less than 1 . Thus, $V_{2, \max }$ is less than $V_{D D} / 2$.

