EE434

ASIC and Digital Systems

Final Exam

Apr. 30, 2018. (8am - 10am)
Instructor: Dae Hyun Kim (daehyun@eecs.wsu.edu)

Name:

WSU ID:

Problem	Points	
1	20	
2	10	
3	20	
4	20	
5	20	
6	20	
7	20	
8	20	
Total	150	

Problem \#1 (Logic Design, 20 points)

The following shows a three-input NAND gate surrounded by F/Fs.

The inputs (ABC) are generated from an input generator as follows:

In other words, $\mathrm{ABC}=(1,1,1)$ during even clock cycles and (0 or 1,0 or 1,0 or 1) during odd clock cycles. The probabilities that A, B, and C become 0 or 1 during the odd clock cycles are as follows:
A: 0 (0.2), 1 (0.8)
B: 0 (0.3), 1 (0.7)
C: 0 (0.4), 1 (0.6)

Assign the input signals (the outputs of the F/Fs) to the gates of the three NFETs. You should minimize the total dynamic power consumption. The dynamic power is computed by $a f C V_{D D}{ }^{2}$ where α is the switching factor.

Since the output is always discharged during the even clock cycles, we can minimize the total dynamic power by minimizing the total capacitance charged during the odd clock cycles. For instance, if we assign ABC to the NFETs from the top, the expectation value will be
$(0.8 * 0.3+0.8 * 0.7 * 0.4) * 0.1 f F+(0.8 * 0.7 * 0.4) * 0.5 f F=0.024 f F+0.1344 f F=0.1584 f F$.
ABC: $0.8 * 0.3^{*} 0.1 \mathrm{fF}+0.8^{*} 0.7^{*} 0.4 * 0.6 \mathrm{fF}=0.024 \mathrm{fF}+0.1344 \mathrm{fF}=0.1584 \mathrm{fF}$
ACB: $(0.8 * 0.4)^{*} 0.1 \mathrm{fF}+(0.8 * 0.6 * 0.3) * 0.6 \mathrm{fF}=0.032 \mathrm{fF}+0.0864 \mathrm{fF}=0.1184 \mathrm{fF}$
BAC: $(0.7 * 0.2)^{\star 0} 0.1 \mathrm{fF}+\left(0.7 * 0.8^{*} 0.4\right)^{\star} 0.6 \mathrm{fF}=0.014 \mathrm{fF}+0.1344 \mathrm{fF}=0.1484 \mathrm{fF}$

BCA: $(0.7 * 0.4) * 0.1 \mathrm{fF}+(0.7 * 0.6 * 0.2) * 0.6 \mathrm{fF}=0.028 f \mathrm{~F}+0.0504 \mathrm{fF}=0.0784 \mathrm{fF}$
CAB: $(0.6 * 0.2) * 0.1 \mathrm{fF}+(0.6 * 0.8 * 0.3) * 0.6 \mathrm{fF}=0.012 \mathrm{fF}+0.0864 \mathrm{fF}=0.0984 \mathrm{fF}$
CBA: $\left(0.6^{*} 0.3\right)^{*} 0.1 \mathrm{fF}+\left(0.6^{*} 0.7^{*} 0.2\right)^{*} 0.6 \mathrm{fF}=0.018 \mathrm{fF}+0.0504 \mathrm{fF}=0.0685 \mathrm{fF}$ Thus, CBA is the best assignment.

Problem \#2 (Logic Design, 10 points)

The following figure shows the NFET network of a static CMOS logic gate. Y is the output and $A \sim F$ are the inputs of the gate. Express Y as a Boolean function of the inputs.

Problem \#3 (Logic Design, 20 points)

1) Design a positive D-latch ($Q=D$ when $C K=h i g h, ~ Q=h o l d$ when $C K=l o w)$ using transmission gates only. Available inputs: $\boldsymbol{D}, \overline{\boldsymbol{D}}, \boldsymbol{C K}, \overline{\boldsymbol{C K}}$. Outputs: Q, \bar{Q}. You cannot use Power ($V_{D D}$) and Ground ($V_{S S}$). Use the following symbols for the transmission gates.

Try to minimize the \# transmission gates.

2) Design a positive D-latch using transmission gates only. Available inputs: $D, C K, \overline{C K}$. Outputs: Q, \bar{Q}. You can use Power ($V_{D D}$) and Ground $\left(V_{S S}\right)$ too. Try to minimize the \# transmission gates.

3) Does the D-latch design in Problem 1) have any problems? If yes, discuss the problems.

It will have a leakage or timing problem (the nodes driving Q and Q ' are floating).

Problem \#4 (DC Characteristics, 20 points).

The following circuit shows an inverter design. When A is $0, Y$ is $V_{D D}$. When A is $V_{D D}, Y$ is close to 0 . Sketch a DC characteristic curve for the inverter. You should split the curve into regions and show the operation mode of the NFET in each region. Express the output voltage V_{Y} as a function of $R, V_{A}, V_{t n}, \beta_{n}, V_{D D}$ in each region.

- For the current in saturation mode, use $I=\frac{1}{2} \beta_{n}\left(V_{G S}-V_{t n}\right)^{2}$.
- For the current in linear mode, use $I=\beta_{n}\left\{\left(V_{G S}-V_{t n}\right) V_{D S}-\frac{1}{2} V_{D S}{ }^{2}\right\}$

Region 1)
$V_{G S}=V_{A}-0<V_{t n}$: Cut-off. $V_{Y}=V_{D D}$

Region 2)

$V_{G S}>V_{t n}(\mathrm{ON})$
$V_{D S}=V_{Y}-0 \approx V_{D D}>V_{G S}-V_{t n}=V_{A}-V_{t n}$ (Saturation)

$$
\frac{V_{D D}-V_{Y}}{R}=\frac{1}{2} \beta_{n}\left(V_{A}-V_{t n}\right)^{2} \rightarrow V_{Y}=V_{D D}-\frac{R}{2} \beta_{n}\left(V_{A}-V_{t n}\right)^{2}
$$

Region 3)

$$
\begin{aligned}
& V_{G S}>V_{t n}(\mathrm{ON}) \\
& V_{D S}= \\
& V_{Y}-0 \approx 0<V_{G S}-V_{t n}=V_{A}-V_{t n} \approx V_{D D}-V_{t n} \text { (Linear) } \\
& \quad \frac{V_{D D}-V_{Y}}{R}=\beta_{n}\left\{\left(V_{A}-V_{t n}\right) V_{Y}-\frac{1}{2} V_{Y}^{2}\right\} \rightarrow V_{D D}-V_{Y}=R \beta_{n}\left\{\left(V_{A}-V_{t n}\right) V_{Y}-\frac{1}{2} V_{Y}^{2}\right\}
\end{aligned}
$$

$$
\begin{gathered}
\rightarrow \frac{R \beta_{n}}{2} V_{Y}^{2}-\left\{1+R \beta_{n}\left(V_{A}-V_{t n}\right)\right\} V_{Y}+V_{D D}=0 \rightarrow \\
V_{Y}=\frac{\left\{1+R \beta_{n}\left(V_{A}-V_{t n}\right)\right\}-\sqrt{\left\{1+R \beta_{n}\left(V_{A}-V_{t n}\right)\right\}^{2}-2 R \beta_{n}}}{R \beta_{n}}
\end{gathered}
$$

Problem \#5 (Interconnects, 20 points)

The following shows two nets connecting three gates $\left(G_{1}, G_{2}, G_{3}\right)$. To reduce the delay, you insert buffers between G_{1} and G_{2} and between G_{2} and G_{3}. The total number of buffers you insert is k (constant). Thus, the total number of buffers you insert between G_{1} and G_{2} is a and the total number of buffers you insert between G_{2} and G_{3} is $k-a$. Find a, i.e., express a as a function of L_{1}, L_{2}, k minimizing the total delay (from G_{1} to G_{3}).

- All the gates $\left(G_{1}, G_{2}, G_{3}\right)$ and the buffers are of the same type (i.e., they have the same output resistance, input capacitance, and internal delay).

We will use the fact that the buffers should be evenly distributed between G_{1} and G_{2} and between G_{2} and G_{3} because they are of the same type.

Total delay $T=k \tau+(a+1)\left(R \frac{L_{1}}{a+1} c+R C_{i n}+r \frac{L_{1}}{a+1} C_{i n}+\frac{1}{2} r c\left(\frac{L_{1}}{a+1}\right)^{2}\right)+(k-a+$ 1) $\left(R \frac{L_{2}}{k-a+1} c+R C_{i n}+r \frac{L_{2}}{k-a+1} C_{i n}+\frac{1}{2} r c\left(\frac{L_{2}}{k-a+1}\right)^{2}\right)$
where τ is the delay of each gate, r is the unit wire resistance, c is the unit wire capacitance, R is the output resistance of a gate, and $C_{\text {in }}$ is the input capacitance of a gate.

$$
\begin{gathered}
\frac{d T}{d a}=-\frac{1}{2} r c\left(\frac{L_{1}}{a+1}\right)^{2}+\frac{1}{2} r c\left(\frac{L_{2}}{k-a+1}\right)^{2}=0 \\
\frac{L_{1}}{a+1}=\frac{L_{2}}{k-a+1} \\
\therefore a=\frac{\boldsymbol{k} \boldsymbol{L}_{1}+\boldsymbol{L}_{1}-\boldsymbol{L}_{2}}{\boldsymbol{L}_{1}+\boldsymbol{L}_{2}}
\end{gathered}
$$

Problem \#6 (Timing Analysis, 20 points)

The figure shown above shows a multi-cycle logic. In general, a logic between two pipeline stages (or FFs) takes one clock cycle. If the logic delay is greater than the clock period, however, we can consider the logic a two-cycle logic, which takes two clock cycles. If a logic requires more than one clock cycle, it is called a multi-cycle logic. The waveform shows how the data captured by D-F/F 1 is computed and transferred to DF/F 2 after two clock cycles. The controller logic guarantees that each data fed into Logic 1 through D-F/F 1 is held for two clock cycles.

Find a setup time and a hold time constraints for Logic 1 shown above. Use the following constants.

- For D-F/F 1
o Setup time: s_{1}, Hold time: h_{1}, C-Q delay: C_{1}
- For D-F/F 2
o Setup time: s_{2}, Hold time: h_{2}, C-Q delay: C_{2}
- Logic 1 delay: L_{1}
- Clock period: $T_{C K}$
- Delay from CLK to D-FF 1: D_{1}
- Delay from CLK to D-FF 2: D_{2}

Setup time: $D_{1}+C_{1}+L_{1} \leq D_{2}+2 T_{C K}-S_{2}$

Hold time: $D_{1}+C_{1}+L_{1} \geq D_{2}+h_{2}$

Problem \#7 (Timing Analysis, 20 points)

The following figure shows a general signal path. Assume that 1) each gate is combinational, 2) each gate has multiple input ports, 3) each gate has one output port, and 4) there is no feedback path in the circuit. $G i$ is the i-th combinational gate.

Suppose the slacks (= required time - arrival time) at the output ports of gate G_{2} and G_{4} are $S_{G 2}$ and $S_{G 4}$, respectively. Prove or disprove that $S_{G 4}<S_{G 2}$ is always satisfied.

False.

$$
\begin{gathered}
S_{G 2}=R_{G 2}-A_{G 2} \\
S_{G 4}=R_{G 4}-A_{G 4} \\
R_{G 4}<R_{G 2} \\
A_{G 4}<A_{G 2}
\end{gathered}
$$

Thus, if $A_{G 4}$ is very small but $A_{G 2}$ is very large (due to some other signal paths coming to G2), $S_{G 4}>S_{G 2}$ will be satisfied.

Problem \#8 (Timing Analysis, 20 points)

Find all setup and hold time constraints (inequalities) for the following system.

Use the followings for the constraints:

- Clock period: $T_{C L K}$
- Delay from the clock source to the clock pin of D-F/F 1: D_{1}
- Delay from the clock source to the clock pin of D-F/F 2: D_{2}
- C-Q delay of D-F/F 1: C_{1}
- C-Q delay of D-F/F 2: C_{2}
- Delay of Logic 1: L_{1}
- Delay of Logic 2: L_{2}
- Setup time of D-F/F 1: S_{1}
- Setup time of D-F/F 2: S_{2}
- Hold time of D-F/F 1: H_{1}
- Hold time of D-F/F 2: H_{2}

For Logic 1
(Setup time) $D_{1}+C_{1}+L_{1} \leq D_{2}+T_{C L K}-S_{2}$
(Hold time) $D_{1}+C_{1}+L_{1} \geq D_{2}+H_{2}$
For Logic 2
(Setup time) $D_{2}+C_{2}+L_{2} \leq D_{1}+T_{C L K}-S_{1}$
(Hold time) $D_{2}+C_{2}+L_{2} \geq D_{1}+H_{1}$

