## EE434

## ASIC and Digital Systems

## Midterm Exam 1

## Feb. 16, 2018. (4:10pm - 5pm) <br> Instructor: Dae Hyun Kim (daehyun@eecs.wsu.edu)

## Name:

## WSU ID:

| Problem | Points |  |
| :---: | :---: | :--- |
| 1 | 10 |  |
| 2 | 10 |  |
| 3 | 10 |  |
| 4 | 10 |  |
| 5 | 10 |  |
| 6 | 10 |  |
| Total | 60 |  |

* Allowed: Textbooks, cheat sheets, class notes, notebooks, calculators, watches
* Not allowed: Electronic devices (smart phones, tablet PCs, laptops, etc.) except calculators and watches


## Problem \#1 (Static CMOS gates, 10 points)

The following shows the NFET network of a static CMOS gate. Draw a PFET network for the gate. Available inputs: $A, B, C, D, \bar{A}, \bar{B}, \bar{C}, \bar{D}$. You should minimize the total number of PFETs in your PFET network.


| A | B | C | D | Y |
| :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 0 | 1 |
| 0 | 0 | 0 | 1 | 1 |
| 0 | 0 | 1 | 0 | 0 |
| 0 | 0 | 1 | 1 | 0 |
| 0 | 1 | 0 | 0 | 1 |
| 0 | 1 | 0 | 1 | 0 |
| 0 | 1 | 1 | 0 | 0 |
| 0 | 1 | 1 | 1 | 0 |
| 1 | 0 | 0 | 0 | 0 |
| 1 | 0 | 0 | 1 | 0 |
| 1 | 0 | 1 | 0 | 0 |
| 1 | 0 | 1 | 1 | 0 |
| 1 | 1 | 0 | 0 | 0 |
| 1 | 1 | 0 | 1 | 0 |
| 1 | 1 | 1 | 0 | 0 |
| 1 | 1 | 1 | 1 | 1 |

Thus, $Y$ is 1 in the following four cases: $Y=\bar{A} \bar{B} \bar{C} \bar{D}+\bar{A} \bar{B} \bar{C} D+\bar{A} B \bar{C} \bar{D}+A B C D=A B C D+$ $\bar{A} \bar{B} \bar{C}+\bar{A} \bar{C} \bar{D}=A B C D+\bar{A} \bar{C}(\bar{B}+\bar{D})$.


## Problem \#2 (Transmission Gates, 10 points)

Design (draw a schematic) the following Boolean function using transmission gates only.

$$
Y=A \oplus B \oplus C
$$

Available inputs: $A, B, C, \bar{A}, \bar{B}, \bar{C}$. You cannot use Power $\left(V_{D D}\right)$ and Ground $\left(V_{S S}\right)$. Use the following symbols for the transmission gates.


Design constraint: The total \# transmission gates should be less than or equal to 10.

$$
F=A \oplus B=A \bar{B}+\bar{A} B
$$



$$
Y=(A \oplus B) \oplus C=F \bar{C}+\bar{F} C
$$



## Problem \#3 (Design, 10 points)

Design (draw a schematic) a two-bit comparator using transmission gates only. The following shows a truth table for the comparator:

| A1 | A0 | B1 | B0 | Y1 |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 0 |  | 0 |
| 0 | 0 | 0 | 1 |  | 0 |
| 0 | 0 | 1 | 0 |  | 0 |
| 0 | 0 | 1 | 1 |  | 0 |
| 0 | 1 | 0 | 0 |  | 1 |
| 0 | 1 | 0 | 1 |  | 0 |
| 0 | 1 | 1 | 0 | 0 |  |
| 0 | 1 | 1 | 1 | 0 |  |
| 1 | 0 | 0 | 0 | 1 |  |
| 1 | 0 | 0 | 1 | 1 |  |
| 1 | 0 | 1 | 0 | 0 |  |
| 1 | 0 | 1 | 1 | 0 |  |
| 1 | 1 | 0 | 0 | 1 |  |
| 1 | 1 | 0 | 1 | 1 |  |
| 1 | 1 | 1 | 0 | 1 |  |
| 1 | 1 | 1 | 1 | 0 |  |

Available inputs: $A 1, A 0, B 1, B 0, \overline{A 1}, \overline{A 0}, \overline{B 1}, \overline{B 0}$. You cannot use Power $\left(V_{D D}\right)$ and Ground $\left(V_{S S}\right)$. Use the following symbols for the transmission gates.


Design constraint: The total \# transmission gates should be less than or equal to 12.

$$
Y=A 1 \cdot \overline{B 1}+A 0 \cdot \overline{B 1} \cdot \overline{B 0}+A 1 \cdot A 0 \cdot \overline{B 0}
$$



## Problem \#4 (Transistor Sizing, 10 points).

Size the transistors in the following pull-down network. $R_{n}$ is the resistance of a 1 X NMOS transistor. Ignore parasitic capacitances. Target time constant: $\tau_{\text {target }} \leq R_{n} \cdot C_{L}$. Try to minimize the total area.


Paths $A-B-C-D-\bar{F}$ and $A-\bar{B}-E-\bar{C}-G$ are the two critical paths. Thus, we set the sizes of the NFETs on the path to 5 X. To satisfy the timing constraint for the path $A-F-\bar{C}-G$, we set the size of the NFET $F$ to 2.5 X .

## Problem \#5 (Transistor Sizing, 10 points).

The following shows an NFET network of

$$
F=\overline{y \cdot\left(x_{1,1}+\cdots+x_{1, p_{1}}\right) \cdot\left(x_{2,1}+\cdots+x_{2, p_{2}}\right) \cdot \ldots \cdot\left(x_{k, 1}+\cdots+x_{k, p_{k}}\right)}
$$

Notice that $k, p_{1}, \ldots, p_{k}$ are constants. The fall delay should be less than or equal to $R_{n} C_{L}$ where $R_{n}$ is the resistance of a $1 \times$ NFET. The NFET $y$ is upsized to $a \times$ and each NFET connected to $x_{i, j}$ is upsized to $b_{i} \times$. We minimize the total width

$$
W=a+b_{1} \cdot p_{1}+b_{2} \cdot p_{2}+\cdots+b_{k} \cdot p_{k}
$$

Find $a$ (the size of the NFET connected to input $y$ ) that minimizes the total width (i.e., represent $a$ as a function of $p_{1}, p_{2}, \ldots, p_{k}$.

Timing constraint: $C_{L}\left(\frac{R_{n}}{a}+\frac{R_{n}}{b_{1}}+\frac{R_{n}}{b_{2}}+\cdots+\frac{R_{n}}{b_{k}}\right) \leq R_{n} C_{L}$. We take $=$, so the constraint is

$$
\frac{1}{a}+\frac{1}{b_{1}}+\cdots+\frac{1}{b_{k}}=1
$$

Substitution: $\frac{1}{a}=A, \frac{1}{b_{i}}=B_{i}$

$$
A+\sum B_{i}=1
$$

$$
\begin{gathered}
W=a+\sum p_{i} b_{i}=\frac{1}{A}+\frac{p_{1}}{B_{1}}+\cdots+\frac{p_{k}}{B_{k}}=\frac{1}{1-\sum B_{i}}+\sum \frac{p_{i}}{B_{i}} \\
\frac{\partial W}{\partial B_{i}}=\frac{1}{\left(1-\sum B_{i}\right)^{2}}-\frac{p_{i}}{B_{i}{ }^{2}}=0
\end{gathered}
$$

Substitution: $\sum B_{i}=S$

$$
\begin{gathered}
\frac{\partial W}{\partial B_{i}}=\frac{1}{(1-S)^{2}}-\frac{p_{i}}{B_{i}^{2}}=0, \text { so } B_{i}=\sqrt{p_{i}}(1-S) . \\
\sum B_{i}=S=(1-S) \sum \sqrt{p_{i}}
\end{gathered}
$$

Substitution: $\sum \sqrt{p_{i}}=r$

$$
\begin{gathered}
S=(1-S) r, \text { so } S=\frac{r}{r+1} . \\
\therefore B_{i}=\frac{\sqrt{p_{i}}}{r+1}=\frac{\sqrt{p_{i}}}{1+\sum \sqrt{p_{i}}}, b_{i}=\frac{1+\sum \sqrt{p_{i}}}{\sqrt{p_{i}}} \\
A=1-S=\frac{1}{r+1}, \therefore a=1+\sum \sqrt{p_{i}}=1+\sqrt{p_{1}}+\sqrt{p_{2}}+\cdots+\sqrt{p_{k}}
\end{gathered}
$$

## Problem \#6 (Pass Transistor, 10 points)

The following schematic implements an XOR gate using pass transistors.


The inverter at the output restores the signal so that the output swing can be $\left[0, V_{D D}\right]$. The following plots show the $V_{D S}$ characteristic of the NFET when its gate voltage is $V_{D D}$ and the $V_{D S}$ characteristic of the PFET when its gate voltage is 0 .


The following plot shows the input-output characteristic of the inverter.


$V_{t n}$ and $\left|V_{t p}\right|$ are the threshold voltages of the NFET and the PFET, respectively.
$A, B, \bar{A}, \bar{B}$ are either $O V$ (for 0 ) or $V_{D D}$ (for 1 ). The swing of the final output $A \oplus B$ should be $\left[0, V_{D D}\right]$, i.e., $0 \vee$ if $A \oplus B=0$ and $V_{D D}$ if $A \oplus B=1$. Find all inequalities for the full output swing. (Hint: The inequalities might consist of $V_{D D}, V_{t n}$, and $\left|V_{t p}\right|$.)

| A | B | Input of the inverter (logical) |
| :---: | :---: | :---: |
| 0 | 0 | $V_{D D}-V_{t n}$ |
| 0 | 1 | 0 |
| 1 | 0 | 0 |
| 1 | 1 | $V_{D D}-V_{t n}$ |

Thus, if the input of the inverter is 0 , the output voltage is $V_{D D}$. If the input is $V_{D D}-V_{t n}$, the output should be 0 V . Thus, this should be greater than or equal to $V_{D D}-\left|V_{t p}\right|$. Thus, $V_{t n} \leq\left|V_{t p}\right|$ is the only inequality it should satisfy.

