EE434

ASIC and Digital Systems

Midterm Exam 1

Feb. 16, 2018. (4:10pm - 5pm)

Instructor: Dae Hyun Kim (<u>daehyun@eecs.wsu.edu</u>)

Name:

WSU ID:

Problem	Points	
1	10	
2	10	
3	10	
4	10	
5	10	
6	10	
Total	60	

* Allowed: Textbooks, cheat sheets, class notes, notebooks, calculators, watches

* Not allowed: Electronic devices (smart phones, tablet PCs, laptops, etc.) except calculators and watches

Problem #1 (Static CMOS gates, 10 points)

The following shows the NFET network of a static CMOS gate. <u>Draw a PFET network</u> for the gate. Available inputs: $A, B, C, D, \overline{A}, \overline{B}, \overline{C}, \overline{D}$. You should <u>minimize</u> the total number of PFETs in your PFET network.

Thus, *Y* is 1 in the following four cases: $Y = \overline{AB}\overline{CD} + \overline{AB}\overline{CD} + \overline{AB}\overline{CD} + ABCD = ABCD + \overline{AB}\overline{C} + \overline{AC}\overline{D} = ABCD + \overline{AC}(\overline{B} + \overline{D}).$

Problem #2 (Transmission Gates, 10 points)

Design (draw a schematic) the following Boolean function using transmission gates only.

$$Y = A \oplus B \oplus C$$

Available inputs: $A, B, C, \overline{A}, \overline{B}, \overline{C}$. You cannot use Power (V_{DD}) and Ground (V_{SS}). Use the following symbols for the transmission gates.

Design constraint: The total # transmission gates should be less than or equal to 10.

 $F = A \bigoplus B = A\overline{B} + \overline{A}B$

 $Y = (A \oplus B) \oplus C = F\bar{C} + \bar{F}C$

Problem #3 (Design, 10 points)

<u>Design (draw a schematic) a two-bit comparator using transmission gates only</u>. The following shows a truth table for the comparator:

A1	A0	B1	B0	Y1
0	0	0	0	0
0	0	0	1	0
0	0	1	0	0
0	0	1	1	0
0	1	0	0	1
0	1	0	1	0
0	1	1	0	0
0	1	1	1	0
1	0	0	0	1
1	0	0	1	1
1	0	1	0	0
1	0	1	1	0
1	1	0	0	1
1	1	0	1	1
1	1	1	0	1
1	1	1	1	0

Available inputs: $A1, A0, B1, B0, \overline{A1}, \overline{A0}, \overline{B1}, \overline{B0}$. You cannot use Power (V_{DD}) and Ground (V_{SS}). Use the following symbols for the transmission gates.

Design constraint: The total # transmission gates should be less than or equal to 12.

 $Y = A1 \cdot \overline{B1} + A0 \cdot \overline{B1} \cdot \overline{B0} + A1 \cdot A0 \cdot \overline{B0}$

Problem #4 (Transistor Sizing, 10 points).

Size the transistors in the following pull-down network. R_n is the resistance of a 1X NMOS transistor. Ignore parasitic capacitances. Target time constant: $\tau_{target} \leq R_n \cdot C_L$. Try to minimize the total area.

Paths $A - B - C - D - \overline{F}$ and $A - \overline{B} - E - \overline{C} - G$ are the two critical paths. Thus, we set the sizes of the NFETs on the path to 5X. To satisfy the timing constraint for the path $A - F - \overline{C} - G$, we set the size of the NFET *F* to 2.5X.

Total width: 47.5X

Problem #5 (Transistor Sizing, 10 points).

The following shows an NFET network of

Notice that $k, p_1, ..., p_k$ are constants. The fall delay should be less than or equal to $R_n C_L$ where R_n is the resistance of a 1 × NFET. The NFET *y* is upsized to *a* × and each NFET connected to $x_{i,j}$ is upsized to $b_i \times$. We minimize the total width

$$W = a + b_1 \cdot p_1 + b_2 \cdot p_2 + \dots + b_k \cdot p_k.$$

Find *a* (the size of the NFET connected to input *y*) that minimizes the total width (i.e., represent *a* as a function of $p_1, p_2, ..., p_k$.

Timing constraint: $C_L(\frac{R_n}{a} + \frac{R_n}{b_1} + \frac{R_n}{b_2} + \dots + \frac{R_n}{b_k}) \le R_n C_L$. We take =, so the constraint is

$$\frac{1}{a} + \frac{1}{b_1} + \dots + \frac{1}{b_k} = 1.$$

Substitution: $\frac{1}{a} = A$, $\frac{1}{b_i} = B_i$

$$A + \sum B_i = 1$$

$$W = a + \sum p_i b_i = \frac{1}{A} + \frac{p_1}{B_1} + \dots + \frac{p_k}{B_k} = \frac{1}{1 - \sum B_i} + \sum \frac{p_i}{B_i}$$
$$\frac{\partial W}{\partial B_i} = \frac{1}{(1 - \sum B_i)^2} - \frac{p_i}{B_i^2} = 0$$

Substitution: $\sum B_i = S$

$$\frac{\partial W}{\partial B_i} = \frac{1}{(1-S)^2} - \frac{p_i}{B_i^2} = 0, \text{ so } B_i = \sqrt{p_i}(1-S).$$
$$\sum B_i = S = (1-S) \sum \sqrt{p_i}$$

Substitution: $\sum \sqrt{p_i} = r$

$$S = (1 - S)r, so \ S = \frac{r}{r+1}.$$

$$\therefore B_i = \frac{\sqrt{p_i}}{r+1} = \frac{\sqrt{p_i}}{1 + \sum \sqrt{p_i}}, \ b_i = \frac{1 + \sum \sqrt{p_i}}{\sqrt{p_i}}$$

$$A = 1 - S = \frac{1}{r+1}, \therefore a = 1 + \sum \sqrt{p_i} = 1 + \sqrt{p_1} + \sqrt{p_2} + \dots + \sqrt{p_k}$$

Problem #6 (Pass Transistor, 10 points)

The following schematic implements an XOR gate using pass transistors.

The inverter at the output restores the signal so that the output swing can be $[0, V_{DD}]$. The following plots show the V_{DS} characteristic of the NFET when its gate voltage is V_{DD} and the V_{DS} characteristic of the PFET when its gate voltage is 0.

The following plot shows the input-output characteristic of the inverter.

 V_{tn} and $|V_{tp}|$ are the threshold voltages of the NFET and the PFET, respectively. $A, B, \overline{A}, \overline{B}$ are either 0V (for 0) or V_{DD} (for 1). The swing of the final output $A \oplus B$ should be $[0, V_{DD}]$, i.e., 0V if $A \oplus B = 0$ and V_{DD} if $A \oplus B = 1$. Find all inequalities for the full output swing. (Hint: The inequalities might consist of V_{DD}, V_{tn} , and $|V_{tp}|$.)

Α	В	Input of the inverter (logical)
0	0	$V_{DD} - V_{tn}$
0	1	0
1	0	0
1	1	$V_{DD} - V_{tn}$

Thus, if the input of the inverter is 0, the output voltage is V_{DD} . If the input is $V_{DD} - V_{tn}$, the output should be 0V. Thus, this should be greater than or equal to $V_{DD} - |V_{tp}|$. Thus, $V_{tn} \le |V_{tp}|$ is the only inequality it should satisfy.