EE434

ASIC and Digital Systems

Midterm Exam 1

Feb. 27, 2019. (4:10pm – 5pm)

Instructor: Dae Hyun Kim (<u>daehyun@eecs.wsu.edu</u>)

Name:

WSU ID:

Problem	Points	
1	10	
2	10	
3	10	
4	20	
5	20	
6	10	
Total	80	

Problem #1 (Static CMOS gates, 10 points)

The following shows the NFET network of a static CMOS gate. Express the output *Y* as a Boolean function of the inputs $(A \sim I)$. (You don't need to simplify the expression.)

 $Y = \overline{AB(F + GH + IJ + DEJ) + CD(F + GH + IJ) + CE(J + IF + IGH)}$

Problem #2 (Transmission Gates, 10 points)

Design (draw a schematic) the following Boolean function using transmission gates only.

$$Y = (A \oplus B) + \overline{((A \cdot B) \oplus C)}$$

Available inputs: $A, B, C, \overline{A}, \overline{B}, \overline{C}$. You cannot use Power (V_{DD}) and Ground (V_{SS}). Use the following symbols for the transmission gates.

(# TGs≤6: 10 points. 7≤# TGs≤8: 7 points. 9≤# TGs≤10: 5 points. # TGs>10: 0 points)

 $AB = 00: Y = \overline{C}$ AB = 01: Y = 1AB = 10: Y = 1AB = 11: Y = C

Problem #3 (Transistor Sizing, 10 points)

Size the transistors in the following pull-down network. R_n is the resistance of a 1X NMOS transistor. C_L is the load capacitance. Ignore parasitic capacitances. Target delay: $\tau_T \leq R_n \cdot C_L$. Try to minimize the total area.

(Total width W \leq 31X: 10 points. 31X<W \leq 32X: 8 points. 32X<W \leq 34X: 5 points. 34X<W: 3 points)

Longest paths: A-B-C-D, A-F-G-H, so they are upsized to 4X.

A: 4X

B: 4X

C: 4X

D: 4X

E: 2X

F: 4X

G: 4X

H: 4X

I: 4/3X

Total: 94/3X (31.33X)

Transistor A is a bottleneck, so if we upsize it to 5X, B,C,D,F,G,H can be upsized to 15/4X. In this case, E becomes 15/8X and I becomes 5/4X. The total width in this case is 245/8X, which is 30.625X.

Problem #4 (Transistor Sizing, 20 points)

Solve either 4-(1) or 4-(2). You don't need to solve both.

(1) (20 points) <u>Size the transistors in the following pull-down network.</u> R_n is the resistance of a 1X NMOS transistor. C_L is the load capacitance. Ignore parasitic capacitances. Target delay: $\tau_T \leq R_n \cdot C_L$. <u>Minimize the total area (i.e., size the transistors optimally).</u>

A: aX, B,C,D: bX, E: cX

$$\frac{1}{a} + \frac{3}{b} = 1, \frac{1}{a} + \frac{1}{c} = 1$$
$$b = \frac{3a}{a-1}, c = \frac{a}{a-1}$$
$$W = a + 3b + c = a + \frac{9a}{a-1} + \frac{a}{a-1} = a + 10\frac{a}{a-1}$$
$$W' = 1 + \frac{10(a-1) - 10a}{(a-1)^2} = 0$$
$$a = 1 + \sqrt{10}, b = 3 + \frac{3}{\sqrt{10}}, c = 1 + \frac{1}{\sqrt{10}}, W = 11 + 2\sqrt{10}$$

(2) (12 points) Answer the following questions.

(a) The optimal size of transistor A is greater than 4X True / False).

(b) The optimal size of transistor B is greater than 4X (T /F).

- (c) The optimal size of transistor B is equal to the optimal size of transistor D \boxed{T} /F).
- (d) The optimal size of transistor E is greater than 2X (T /F).
- (e) The optimal size of transistor C is $3 \times$ the optimal size of transistor E T/F).

(f) The sum of the optimal widths of all the transistors is greater than or equal to 18X (T /F).

Problem #5 (Layout, 20 points)

Signal input: A, D. Signal output: Y. Clock: CK

1) (10 points) Convert the layout into a transistor-level schematic.

2) (10 points) What is the function of the circuit?

This is a positive-edge-triggered D-F/F with an asynchronous active-low reset signal A.

Problem #6 (Layout, 10 points)

Input: A, B

Output: Y

What is the function of this circuit?

It is an XOR gate. $Y = A \oplus B$.