
EE466

VLSI Design

Final Exam

Dec. 12, 2018. (3:10pm – 5:10pm)

Instructor: Dae Hyun Kim (daehyun@eecs.wsu.edu)

 Name:

 WSU ID:

Problem Points
1 20
2 10
3 10
4 20
5 10
6 10
7 40
8 50

Total 170

* Allowed: Textbooks, cheat sheets, class notes, notebooks, calculators, watches, electronic devices.

* Not allowed: Chat apps.

mailto:daehyun@eecs.wsu.edu

Problem #1 (Sequential Logic, 20 points)

Schematic A below shows an explicit-pulsed D flip-flop. The signal strength of input 𝐷𝐷 is
unknown (e.g., someone designed a circuit and its output is connected to input 𝐷𝐷).

<Schematic A>

Since we have no clue on the strength of input 𝐷𝐷, we suggest the following D-F/F design. We
can properly size the two inverters in the dotted rectangle.

<Schematic B>

Question: Compare Schematic A and Schematic B (quantitatively and/or qualitatively) in terms
of 1) setup time constraint, 2) hold time constraint, 3) clock-to-Q delay, and 4) output slew
(∆𝑉𝑉𝑄𝑄�/∆𝑡𝑡) where 𝑉𝑉𝑄𝑄� is the voltage at the output node 𝑄𝑄�.

1) Setup time constraint: 𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,𝐴𝐴 < > = 𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,𝐵𝐵

2) Hold time constraint: 𝑡𝑡ℎ𝑜𝑜𝑜𝑜𝑜𝑜,𝐴𝐴 < > = 𝑡𝑡ℎ𝑜𝑜𝑜𝑜𝑜𝑜,𝐵𝐵

3) Clock-to-Q delay: 𝑡𝑡𝐶𝐶−𝑄𝑄,𝐴𝐴 < > = 𝑡𝑡𝐶𝐶−𝑄𝑄,𝐵𝐵

4) Output slew: 𝑠𝑠𝐴𝐴 < > = 𝑠𝑠𝐵𝐵

Problem #2 (DC Analysis of a Domino Logic, 10 points)

The left figure shows a domino-logic-based buffer design and the right figure shows a DC curve
of the inverter in the schematic. 𝜇𝜇𝑛𝑛 = 2𝜇𝜇𝑠𝑠. 𝑤𝑤: Transistor minimum width.

Draw (rough sketches will be accepted) three DC curves (x-axis: 𝑉𝑉𝐴𝐴, y-axis: 𝑉𝑉𝐹𝐹) for the buffer for

1) 𝑤𝑤𝑠𝑠 = 𝑤𝑤𝑛𝑛 = 𝑤𝑤

2) 𝑤𝑤𝑠𝑠 = 2𝑤𝑤,𝑤𝑤𝑛𝑛 = 𝑤𝑤

3) 𝑤𝑤𝑠𝑠 = 𝑤𝑤,𝑤𝑤𝑛𝑛 = 2𝑤𝑤.

Problem #3 (Sequential Logic, 10 points)

The following shows a schematic of a positive-edge triggered D-F/F.

Describe how you can estimate the hold time constraint of the F/F above. (Hold time constraint:
input 𝐷𝐷 should be stable (should not change) for some time after a clock rising edge.)

Problem #4 (Carry Select Adder, 20 points)

The following shows a schematic of a 2k-bit adder designed using k-bit carry select adders. The
delay of a k-bit adder is 𝑘𝑘∆𝐹𝐹𝐴𝐴, the delay of a k-bit MUX is 𝑘𝑘∆𝑀𝑀, and the delay of a two-input
AND (or OR) gate is ∆𝑀𝑀.

1) We are supposed to design an N-bit adder using carry select adders (# groups: 𝑁𝑁
𝑘𝑘

). Find 𝑘𝑘
minimizing the delay of the N-bit adder (express the optimal k as a function of N, ∆𝑀𝑀, and ∆𝐹𝐹𝐴𝐴).
Notice that the worst-case delay occurs at 𝐶𝐶𝑁𝑁 (the final carry out) or 𝑆𝑆𝑁𝑁−1:0 (the final sum).

2) Now, the k-bit adders are designed using conditional sum adders, so the delay of a k-bit adder
is ∆𝑀𝑀 ∙ ln 𝑘𝑘 instead of 𝑘𝑘∆𝐹𝐹𝐴𝐴. Find 𝑘𝑘 minimizing the delay of the new N-bit adder (express the
optimal k as a function of N and ∆𝑀𝑀).

Problem #5 (Carry Skip Adder, 10 points)

The following diagram shows a 16-bit carry-skip adder designed using 4-bit adders.

To improve the speed of the carry-skip adder, we replace the 4-bit adders (4-bit blocks designed
using 4-bit ripple-carry adders) by 4-bit conditional sum adders. The delay of each multiplexer
step in the conditional sum adders is ∆𝑀𝑀 (so, if all the operands are available at time 0, the delay
of a 4-bit conditional sum adder is 3∆𝑀𝑀.) The delay of each 2:1 MUX in the schematic above is
∆𝑀𝑀. The delay of each 𝑝𝑝𝑖𝑖:𝑖𝑖−3 is 2∆𝑀𝑀. Calculate the delay of the new 16-bit carry-skip adder.

Problem #6 (Carry Skip Adder, 10 points)

To radically improve the delay of a carry-skip adder, we design an N-bit carry-skip adder as
follows:

We design the k-bit adder blocks using k-bit conditional sum adders where 𝑘𝑘 is 2𝑚𝑚𝑖𝑖 (𝑖𝑖 is an
integer greater than or equal to 0). We also design the group-propagation signal 𝑝𝑝𝑖𝑖:𝑗𝑗 using OR
gates hierarchically. The following shows the delays of the components:

• k-bit adder: (1 + ln 𝑘𝑘) ∙ ∆𝑀𝑀
• k-bit group-propagation signal 𝑝𝑝𝑖𝑖:𝑖𝑖−𝑘𝑘+1: (2 + ln 𝑘𝑘

4
) ∙ ∆𝑀𝑀

• 2-bit MUX: ∆𝑀𝑀

Find m minimizing the total delay of an N-bit carry-skip adder designed using the new
architecture shown above.

Problem #7 (Prefix Adder, 40 points)

Use the following delay values:

• AND, OR, XOR: ∆
• Two-level (sum-of-product) logic: 2∆
• 𝑔𝑔𝑖𝑖 = 𝑎𝑎𝑖𝑖 ∙ 𝑏𝑏𝑖𝑖, 𝑝𝑝𝑖𝑖 = 𝑎𝑎𝑖𝑖 ⊕ 𝑏𝑏𝑖𝑖

We are designing a 1024-bit Kogge-Stone adder.

1) Represent 𝑠𝑠999 hierarchically using group-generated and group-propagated carries (𝑔𝑔𝑖𝑖:𝑘𝑘, 𝑝𝑝𝑖𝑖:𝑘𝑘)
and 𝑐𝑐0 (primary carry-in), then compute the delay to compute 𝑠𝑠999 assuming all the primary input
signals are available at time 0 (10 points).

2) Represent 𝑠𝑠768 hierarchically using group-generated and group-propagated carries (𝑔𝑔𝑖𝑖:𝑘𝑘, 𝑝𝑝𝑖𝑖:𝑘𝑘)
and 𝑐𝑐0 (primary carry-in), then compute the delay to compute 𝑠𝑠768 assuming all the primary
input signals are available at time 0 (10 points).

3) Calculate the total gate area to build the 1024-bit Kogge-Stone adder. Use the following area
values. Notice that you should generate all sum (𝑠𝑠1023:0) and carry-out (𝑐𝑐1024) signals (10
points).

• Two-input AND, OR gate: 𝑘𝑘
• Two-input XOR: 4𝑘𝑘
• 𝑔𝑔𝑖𝑖 = 𝑎𝑎𝑖𝑖 ∙ 𝑏𝑏𝑖𝑖, 𝑝𝑝𝑖𝑖 = 𝑎𝑎𝑖𝑖 ⊕ 𝑏𝑏𝑖𝑖

4) When we designed a Kogge-Stone adder, we used an XOR gate to calculate 𝑝𝑝𝑖𝑖 = 𝑎𝑎𝑖𝑖 ⊕ 𝑏𝑏𝑖𝑖.
Prove that we can also use 𝑎𝑎𝑖𝑖 + 𝑏𝑏𝑖𝑖 (+ is an OR operation) for 𝑝𝑝𝑖𝑖, i.e., prove that replacing
𝑝𝑝𝑖𝑖 = 𝑎𝑎𝑖𝑖 ⊕ 𝑏𝑏𝑖𝑖 by 𝑝𝑝𝑖𝑖 = 𝑎𝑎𝑖𝑖 + 𝑏𝑏𝑖𝑖 does not change the final sum and carry-out values. (10 points).

Problem #8 (Carry Look-Ahead Adder, 50 points)

The max. fanout is 4. Use the following delay values:

• AND, OR, XOR: ∆
• Two-level (sum-of-product) logic: 2∆
• 𝑔𝑔𝑖𝑖 = 𝑎𝑎𝑖𝑖 ∙ 𝑏𝑏𝑖𝑖, 𝑝𝑝𝑖𝑖 = 𝑎𝑎𝑖𝑖 ⊕ 𝑏𝑏𝑖𝑖

We are designing a 1024-bit carry look-ahead adder.

1) Represent 𝑠𝑠999 hierarchically using group-generated and group-propagated carries (𝑔𝑔𝑖𝑖:𝑘𝑘, 𝑝𝑝𝑖𝑖:𝑘𝑘)
and 𝑐𝑐0 (primary carry-in), then compute the delay to compute 𝑠𝑠999 assuming all the primary input
signals are available at time 0 (10 points).

2) Represent 𝑠𝑠768 hierarchically using group-generated and group-propagated carries (𝑔𝑔𝑖𝑖:𝑘𝑘, 𝑝𝑝𝑖𝑖:𝑘𝑘)
and 𝑐𝑐0 (primary carry-in), then compute the delay to compute 𝑠𝑠768 assuming all the primary
input signals are available at time 0 (10 points).

3) Calculate the total gate area to build the 1024-bit carry look-ahead adder. Use the following
area values. Notice that you should generate all sum (𝑠𝑠1023:0) and carry-out (𝑐𝑐1024) signals (20
points).

• Two-input AND, OR gate: 𝑘𝑘
• Three-input AND, OR gate: 2𝑘𝑘
• Four-input AND, OR gate: 3𝑘𝑘
• Two-input XOR: 4𝑘𝑘
• 𝑔𝑔𝑖𝑖 = 𝑎𝑎𝑖𝑖 ∙ 𝑏𝑏𝑖𝑖, 𝑝𝑝𝑖𝑖 = 𝑎𝑎𝑖𝑖 ⊕ 𝑏𝑏𝑖𝑖
• For a carry look-ahead unit for 𝑎𝑎𝑖𝑖+3:𝑖𝑖 , 𝑏𝑏𝑖𝑖+3:𝑖𝑖 , 𝑐𝑐𝑖𝑖, use the following formulae:

o 𝑐𝑐𝑖𝑖+1 = 𝑔𝑔𝑖𝑖 + 𝑝𝑝𝑖𝑖 ⋅ 𝑐𝑐𝑖𝑖 (for this, you need a two-input OR and a two-input AND)
o 𝑐𝑐𝑖𝑖+2 = 𝑔𝑔𝑖𝑖+1 + 𝑝𝑝𝑖𝑖+1 ⋅ 𝑔𝑔𝑖𝑖 + 𝑝𝑝𝑖𝑖+1 ⋅ 𝑝𝑝𝑖𝑖 ⋅ 𝑐𝑐𝑖𝑖 (for this, you need a three-input AND, a

two-input AND, a three-input OR)
o 𝑐𝑐𝑖𝑖+3 = 𝑔𝑔𝑖𝑖+2 + 𝑝𝑝𝑖𝑖+2 ⋅ 𝑔𝑔𝑖𝑖+1 + 𝑝𝑝𝑖𝑖+2 ⋅ 𝑝𝑝𝑖𝑖+1 ⋅ 𝑔𝑔𝑖𝑖 + 𝑝𝑝𝑖𝑖+2 ⋅ 𝑝𝑝𝑖𝑖+1 ⋅ 𝑝𝑝𝑖𝑖 ⋅ 𝑐𝑐𝑖𝑖 (for this, you

need a four-input AND, three-input AND, a two-input AND, a four-input OR)
• For a group carry look-ahead unit for 𝑔𝑔𝑖𝑖+3:𝑖𝑖 ,𝑝𝑝𝑖𝑖+3:𝑖𝑖 , 𝑐𝑐𝑖𝑖, use the following formulae:

o 𝑔𝑔′ (group generation) = 𝑔𝑔𝑖𝑖+3 + 𝑝𝑝𝑖𝑖+3 ⋅ 𝑔𝑔𝑖𝑖+2 + 𝑝𝑝𝑖𝑖+3 ⋅ 𝑝𝑝𝑖𝑖+2 ⋅ 𝑔𝑔𝑖𝑖+1 + 𝑝𝑝𝑖𝑖+3 ⋅ 𝑝𝑝𝑖𝑖+2 ⋅
𝑝𝑝𝑖𝑖+1 ⋅ 𝑔𝑔𝑖𝑖 (for this, you need a two-input AND, a three-input AND, a four-input
AND, a four-input OR)

o 𝑝𝑝′ (group propagation) = 𝑝𝑝𝑖𝑖+3 ⋅ 𝑝𝑝𝑖𝑖+2 ⋅ 𝑝𝑝𝑖𝑖+1 ⋅ 𝑝𝑝𝑖𝑖 (for this, you need a four-input
AND)

o 𝑐𝑐′ (group carry) = 𝑔𝑔′ + 𝑝𝑝′ ⋅ 𝑐𝑐𝑖𝑖 (for this, you need a two-input AND and a two-
input OR)

The max. fanout is 2. Use the following delay values:

• AND, OR, XOR: ∆
• Two-level (sum-of-product) logic: 2∆
• 𝑔𝑔𝑖𝑖 = 𝑎𝑎𝑖𝑖 ∙ 𝑏𝑏𝑖𝑖, 𝑝𝑝𝑖𝑖 = 𝑎𝑎𝑖𝑖 ⊕ 𝑏𝑏𝑖𝑖

We are designing a 1024-bit carry look-ahead adder.

4) Represent 𝑠𝑠999 hierarchically using group-generated and group-propagated carries (𝑔𝑔𝑖𝑖:𝑘𝑘, 𝑝𝑝𝑖𝑖:𝑘𝑘)
and 𝑐𝑐0 (primary carry-in), then compute the delay to compute 𝑠𝑠999 assuming all the primary input
signals are available at time 0 (10 points).

