EE466

VLSI System Design

Midterm Exam
 Oct. 25, 2018. (4:15pm - 5:30pm)
 Instructor: Dae Hyun Kim (daehyun@eecs.wsu.edu)

Name:

WSU ID:

Problem	Points	
1	10	
2	10	
3	5	
4	10	
5	5	
6	10	
7	10	
8	10	
Total	70	

* Allowed: Textbooks, cheat sheets, class notes, notebooks, calculators, watches
* Not allowed: Electronic devices (smart phones, tablet PCs, laptops, etc.) except calculators and watches

Problem \#1 (Static CMOS Gates, 10 points).

Draw a transistor-level schematic for the following Boolean function (Available input: $A, B, C, D, \bar{A}, \bar{B}, \bar{C}, \bar{D})$. Use the static CMOS gate design. Minimize the \# TRs.
\# TRs ≤ 22 : 10 points. $23 \leq \#$ TRs ≤ 24 : 8 points. $25 \leq \#$ TRs ≤ 26 : 6 points. $27 \leq \#$ TRs: 4 points.

$$
\begin{gathered}
F=A+(B \oplus(\overline{C \oplus D})) \\
F=\overline{\overline{A+(B \oplus(\overline{C \oplus D}))}}=\overline{\bar{A} \cdot \overline{B \oplus(\overline{C \oplus D})}}
\end{gathered}
$$

Problem \#2 (Transistor Sizing, 10 points).

Size the transistors in the following pull-down network of a static CMOS gate. R_{n} is the resistance of a 1X NMOS transistor. C_{L} is the load cap. Ignore parasitic capacitances. Target timing constraint: $\tau=R_{n} \cdot C_{L}$. Try to minimize the total area.

Areas80X: 10 points. $80 X<$ Area $\leq 82 X$: 8 points. $82 X<$ Area $\leq 84 X$: 6 points. $84 X<$ Area: 4 points.

The worst case is that only one path is activated (e.g., $V_{19}, V_{1}, V_{2}, V_{4}$). Thus, each of them is upsized to 4 X . Thus, all of them are upsized to 4X. Total area: 76X.

Problem \#3 (Switching Analysis, 5 points).

All the transistors in the figure shown above have the same width W. Ignore parasitic RC. All the inputs are 0 V at time 0 . At time t, some of the input voltages switch from 0 to $V_{D D}$. Which one of the following has the smallest falling delay?

1) $V_{19}, V_{1}, V_{2}, V_{5}$ switch from 0 to VDD. $R=\frac{4}{w}$
2) $V_{19}, V_{1}, V_{2}, V_{3}, V_{5}$ switch from 0 to VDD. $R=\frac{1}{w}+\frac{1}{2 w}+\frac{1}{w}+\frac{1}{w}=\frac{7}{2 w}=\frac{3.5}{w}$
3) $V_{19}, V_{7}, V_{8}, V_{10}, V_{12}$ switch from 0 to VDD. $R=\frac{3.5}{w}$
4) $V_{19}, V_{7}, V_{9}, V_{12}, V_{13}, V_{14}, V_{15}, V_{16}$ switch from 0 to VDD. $R=\frac{4}{w}$
5) $V_{19}, V_{1}, V_{2}, V_{6}, V_{7}, V_{9}, V_{12}, V_{13}, V_{16}, V_{18}$ switch from 0 to VDD. $R=\frac{3}{3 w}+\frac{1}{w}=\frac{2}{w}$
6) $V_{19}, V_{1}, V_{2}, V_{4}, V_{7}, V_{8}, V_{9}, V_{10}, V_{11}, V_{13}, V_{14}, V_{15}, V_{16}$ switch from 0 to VDD. $R=\frac{4}{w}$

Problem \#4 (DC Analysis, 10 points).

Char1

Char2

$$
V_{\text {in }} \longrightarrow \underset{\text { INV1 }}{\longrightarrow} \underset{\text { INV2 }}{\infty} \longrightarrow V_{\text {out }}
$$

The gate-level schematic shows a buffer composed of two inverters.

1) Draw a DC characteristic curve (Char1 is for INV1 and Char2 is for INV2). You should show not only the curve, but also some important numbers in the curve.

2) Draw a DC characteristic curve (Char1 is for INV2 and Char2 is for INV1). You should show not only the curve, but also some important numbers in the curve.

Problem \#5 (Sequential Logic, 5 points).

The following shows a schematic of a positive-edge-triggered D-FF.

What does the following circuit do? Can you explain any differences between the two circuits?

The second one is also a positive-edge-triggered D-FF. The Clock-to-Q delay of the second one is shorter than that of the first one.

Problem \#6 (Sequential Logic, 10 points).

Describe the function of the circuit shown above.
It is a positive-edge-triggered D-FF.

Problem \#7 (Sequential Logic, 10 points).

Describe the function of the circuit shown above.
It is a positive-edge-triggered D-FF.

Problem \#8 (Static CMOS Gates, 10 points).
Draw a dual PFET network of the following NFET network between nodes X and Y. Use eight PFETs only.

