
Logic Design with MOSFETs

Dae Hyun Kim

EECS
Washington State University

References

• John P. Uyemura, “Introduction to VLSI Circuits and Systems,” 2002.
– Chapter 2

• Neil H. Weste and David M. Harris, “CMOS VLSI Design: A Circuits
and Systems Perspective,” 2011.
– Chapter 1

Goal

• Design logic gates using MOSFETs (NMOS and PMOS)

Signals and Wires

• Signals
– 0 = 𝑉𝑉𝑆𝑆𝑆𝑆 = Ground = GND = Low = 0V
– 1 = 𝑉𝑉𝐷𝐷𝐷𝐷 = Power = PWR = High = 5V, 3.3V, 1.5V, 1.2V, 1.0V, etc.

• Wires

𝑉𝑉𝐷𝐷𝐷𝐷

a

Wire 1

b Wire 2

No connection

a

a

Connection

a

a

Ideal Switches

• Switch

• Assert-high switch

• Assert-low switch

Control Control

𝑥𝑥 𝑦𝑦 𝑥𝑥 𝑦𝑦

Electrically short Electrically open

𝑨𝑨 = 𝟏𝟏

𝑥𝑥 𝑦𝑦 = 𝑥𝑥 𝑥𝑥 𝑦𝑦

𝑨𝑨 = 𝟎𝟎

Open (𝑦𝑦 is undefined) Closed (𝒚𝒚 = 𝒙𝒙)

𝑨𝑨 = 𝟏𝟏

𝑥𝑥 𝑦𝑦 = 𝑥𝑥 𝑥𝑥 𝑦𝑦

𝑨𝑨 = 𝟎𝟎

Open (𝑦𝑦 is undefined) Closed (𝒚𝒚 = 𝒙𝒙)

Series/Parallel Connections of Switches

• Series

• Parallel

𝑎𝑎 𝑏𝑏

𝑥𝑥
𝑥𝑥 ∙ 𝑎𝑎

𝑦𝑦 = 𝑥𝑥 ∙ 𝑎𝑎 ∙ 𝑏𝑏 = 𝑥𝑥 ∙ (𝑎𝑎 ∙ 𝑏𝑏)

AND operation
(𝑦𝑦 is defined only when 𝑎𝑎 = 1 and 𝑏𝑏 = 1)

(𝑦𝑦 is undefined if 𝑎𝑎 = 0 or 𝑏𝑏 = 0)

𝑏𝑏

𝑎𝑎

𝑥𝑥 𝑥𝑥 ∙ 𝑎𝑎 + 𝑥𝑥 ∙ 𝑏𝑏 = 𝑥𝑥 ∙ (𝑎𝑎 + 𝑏𝑏)

OR operation
(𝑦𝑦 is defined only when 𝑎𝑎 = 1 or 𝑏𝑏 = 1)

(𝑦𝑦 is undefined if 𝑎𝑎 = 0 and 𝑏𝑏 = 0)

a b y
0 0

undefined 0 1
1 0
1 1 𝑥𝑥

a b y
0 0 undefined
0 1

𝑥𝑥 1 0
1 1

Inverter Design with Switches

• Inverter
– The output is defined both when 𝑎𝑎 = 0 and when 𝑎𝑎 = 1.

𝑎𝑎

𝑎𝑎

1

0

1 ∙ 𝑎𝑎�

0 ∙ 𝑎𝑎

𝑦𝑦 = 1 ∙ 𝑎𝑎� + 0 ∙ 𝑎𝑎 = 𝑎𝑎�
a y
0 1
1 0

Inverter Design with Switches

• Two inverter designs

𝑎𝑎

𝑎𝑎

1

0

𝑦𝑦

𝑎𝑎�

𝑎𝑎�

0

1

𝑦𝑦 Why?

MOSFETs as Switches

• MOSFET: Metal-Oxide-Semiconductor Field-Effect Transistor
– n-channel MOSFET = nFET = NMOS
– p-channel MOSFET = pFET = PMOS
– Complementary MOS: CMOS

• Symbols

nFET pFET

Gate

Source Drain Drain Source

Gate

= =

𝑉𝑉𝐺𝐺

𝑉𝑉𝑆𝑆 𝑉𝑉𝐷𝐷 𝑉𝑉𝐷𝐷 𝑉𝑉𝑆𝑆

𝑉𝑉𝐺𝐺

(𝑉𝑉𝐷𝐷 ≥ 𝑉𝑉𝑆𝑆) (𝑉𝑉𝑆𝑆 ≥ 𝑉𝑉𝐷𝐷)

MOSFETs as Switches

• Threshold voltage
– nFET: 𝑉𝑉𝑇𝑇𝑛𝑛 > 0
– pFET: 𝑉𝑉𝑇𝑇𝑝𝑝 < 0

• nFET

– OFF: 𝑉𝑉𝐺𝐺𝐺𝐺𝑛𝑛 ≤ 𝑉𝑉𝑇𝑇𝑛𝑛
– ON: 𝑉𝑉𝐺𝐺𝐺𝐺𝑛𝑛 > 𝑉𝑉𝑇𝑇𝑛𝑛

• pFET

– OFF: 𝑉𝑉𝑆𝑆𝑆𝑆𝑝𝑝 ≤ |𝑉𝑉𝑇𝑇𝑝𝑝|

– ON: 𝑉𝑉𝑆𝑆𝐺𝐺𝑝𝑝 > |𝑉𝑉𝑇𝑇𝑝𝑝|

Gate

Source

Drain

Source

Drain

Gate

𝑉𝑉𝐴𝐴

𝑉𝑉𝐴𝐴

Logic translation
0

𝑉𝑉𝑇𝑇𝑛𝑛

𝑉𝑉𝐷𝐷𝐷𝐷

𝐴𝐴 = 0: Mn OFF

Mn

Mp

𝐴𝐴 = 1: Mn ON

𝑉𝑉𝐷𝐷𝐷𝐷 𝑉𝑉𝐴𝐴

Logic translation
0

𝑉𝑉𝐷𝐷𝐷𝐷 − |𝑉𝑉𝑇𝑇𝑝𝑝|
𝑉𝑉𝐷𝐷𝐷𝐷

𝐴𝐴 = 0: Mp ON

𝐴𝐴 = 1: Mp OFF

𝑉𝑉𝐴𝐴

MOSFETs as Switches
• Example (PTM High-Performance 45nm High-K Metal Gate)

– 𝑉𝑉𝐷𝐷𝐷𝐷: 1.0V
– 𝑉𝑉𝑇𝑇𝑛𝑛: 0.46893V
– 𝑉𝑉𝑇𝑇𝑝𝑝: -0.49158V

• Example (PTM High-Performance 32nm High-K Metal Gate)

– 𝑉𝑉𝐷𝐷𝐷𝐷: 0.9V
– 𝑉𝑉𝑇𝑇𝑛𝑛: 0.49396V
– 𝑉𝑉𝑇𝑇𝑝𝑝: -0.49155V

• Example (PTM High-Performance 22nm High-K Metal Gate)

– 𝑉𝑉𝐷𝐷𝐷𝐷: 0.8V
– 𝑉𝑉𝑇𝑇𝑛𝑛: 0.50308V
– 𝑉𝑉𝑇𝑇𝑝𝑝: -0.4606V

Pass Characteristics

• nFET

• pFET

𝑉𝑉𝐺𝐺 = 𝑉𝑉𝐷𝐷𝐷𝐷

𝑉𝑉𝑆𝑆 = 𝑉𝑉𝑜𝑜𝑜𝑜𝑜𝑜

𝑉𝑉𝐷𝐷 = 𝑉𝑉𝑖𝑖𝑖𝑖
𝑽𝑽𝒊𝒊𝒊𝒊 ↑ 𝑽𝑽𝑮𝑮𝑮𝑮 ↓ 𝑽𝑽𝒐𝒐𝒐𝒐𝒐𝒐 ↑

0 𝑉𝑉𝐷𝐷𝐷𝐷 0

0.1 𝑉𝑉𝐷𝐷𝐷𝐷 - 0.1 0.1

...

𝑉𝑉𝐷𝐷𝐷𝐷 − 𝑉𝑉𝑇𝑇𝑛𝑛 𝑉𝑉𝑇𝑇𝑛𝑛 𝑉𝑉𝐷𝐷𝐷𝐷 − 𝑉𝑉𝑇𝑇𝑛𝑛

𝑉𝑉𝐷𝐷𝐷𝐷 𝑉𝑉𝑇𝑇𝑛𝑛 𝑉𝑉𝐷𝐷𝐷𝐷 − 𝑉𝑉𝑇𝑇𝑛𝑛

Logic 0 transfer: strong logic 0

Logic 1 transfer: weak logic 1

𝑉𝑉𝐺𝐺 = 0
𝑽𝑽𝒊𝒊𝒊𝒊 ↓ 𝑽𝑽𝑺𝑺𝑺𝑺 ↓ 𝑽𝑽𝒐𝒐𝒐𝒐𝒐𝒐 ↓
𝑉𝑉𝐷𝐷𝐷𝐷 𝑉𝑉𝐷𝐷𝐷𝐷 𝑉𝑉𝐷𝐷𝐷𝐷

𝑉𝑉𝐷𝐷𝐷𝐷 − 𝜀𝜀 𝑉𝑉𝐷𝐷𝐷𝐷 − 𝜀𝜀 𝑉𝑉𝐷𝐷𝐷𝐷 − 𝜀𝜀

...

|𝑉𝑉𝑇𝑇𝑝𝑝| 𝑉𝑉𝑇𝑇𝑝𝑝 |𝑉𝑉𝑇𝑇𝑝𝑝|

0 0 |𝑉𝑉𝑇𝑇𝑝𝑝| Logic 0 transfer: weak logic 0

Logic 1 transfer: strong logic 1

𝑉𝑉𝑆𝑆 = 𝑉𝑉𝑖𝑖𝑖𝑖

𝑉𝑉𝐷𝐷 = 𝑉𝑉𝑜𝑜𝑜𝑜𝑜𝑜

Pass Characteristics

• SPICE simulation (45nm technology)
– nFET

𝑉𝑉𝐷𝐷𝐷𝐷

𝑉𝑉𝑜𝑜𝑜𝑜𝑜𝑜

𝑉𝑉𝑖𝑖𝑖𝑖

Pass Characteristics

• SPICE simulation (45nm technology)
– pFET

0

𝑉𝑉𝑜𝑜𝑜𝑜𝑜𝑜

𝑉𝑉𝑖𝑖𝑖𝑖

Pass Characteristics

• nFET
– Strong logic 0 transfer
– Weak logic 1 transfer

• pFET

– Strong logic 1 transfer
– Weak logic 0 transfer

• CMOS

– Use pFETs to pass logic 1.
– Use nFETs to pass logic 0.

Basic Logic Gates in CMOS

• Principles
– Construct the nFET network using only nFETs and the pFET network

using only pFETs.
– If the output is 1, the pFET network connects 𝑉𝑉𝐷𝐷𝐷𝐷 to the output and the

nFET network disconnects 𝑉𝑉𝑆𝑆𝑆𝑆 and the output.
– If the output is 0, the nFET network connects 𝑉𝑉𝑆𝑆𝑆𝑆 to the output and the

pFET network disconnects 𝑉𝑉𝐷𝐷𝐷𝐷 and the output.

pFET network

𝑓𝑓 (output)

𝑉𝑉𝐷𝐷𝐷𝐷

𝑎𝑎, 𝑏𝑏, 𝑐𝑐, … (inputs)

nFET network

Basic Logic Gates in CMOS

• Inverter

𝑥𝑥 𝑓𝑓 = 𝑥̅𝑥

0 𝑓𝑓 = 1 1 𝑓𝑓 = 0

off

off

𝑓𝑓 = 𝑥̅𝑥 ∙ 1 + 𝑥𝑥 ∙ 0 = 𝑥̅𝑥

TRs: 2
nFET: 1
pFET: 1

Basic Logic Gates in CMOS

• SPICE simulation

Basic Logic Gates in CMOS

• Two-input NAND (NAND2)

𝑓𝑓 = 𝑎𝑎� ∙ 𝑏𝑏� ∙ 1 + 𝑎𝑎� ∙ 𝑏𝑏 ∙ 1 + 𝑎𝑎 ∙ 𝑏𝑏� ∙ 1 + 𝑎𝑎 ∙ 𝑏𝑏 ∙ 0 = 𝑎𝑎� + 𝑏𝑏� = 𝑎𝑎 ∙ 𝑏𝑏

𝑎𝑎 𝑓𝑓 = 𝑎𝑎 ∙ 𝑏𝑏

𝑏𝑏

0 𝑓𝑓 = 1

0

1 𝑓𝑓 = 0

1

off

off

0 𝑓𝑓 = 1

1

off

off

off off

TRs: 4
nFETs: 2
pFETs: 2

Basic Logic Gates in CMOS

• SPICE simulation

Basic Logic Gates in CMOS

• Two-input NOR (NOR2)

𝑎𝑎
𝑓𝑓 = 𝑎𝑎 + 𝑏𝑏

𝑓𝑓 = 𝑎𝑎� ∙ 𝑏𝑏� ∙ 1 + 𝑎𝑎� ∙ 𝑏𝑏 ∙ 0 + 𝑎𝑎 ∙ 𝑏𝑏� ∙ 0 + 𝑎𝑎 ∙ 𝑏𝑏 ∙ 0 = 𝑎𝑎� ∙ 𝑏𝑏� = 𝑎𝑎 + 𝑏𝑏

𝑏𝑏

TRs: 4
nFETs: 2
pFETs: 2

𝑎𝑎

𝑏𝑏

0
𝑓𝑓 = 1

0 0

0

off off

0

1 0

1

off

off
𝑓𝑓 = 0

1
𝑓𝑓 = 0

1 1

1

off

off

Basic Logic Gates in CMOS

• SPICE simulation

Complex Logic Gates in CMOS

• Example

• Using logic gates

• Using logic gates

• Using TRs

𝑓𝑓 = 𝑎𝑎 ∙ (𝑏𝑏 + 𝑐𝑐)

𝑏𝑏
𝑐𝑐

𝑎𝑎

𝑓𝑓
TRs: 14
nFETs: 7
pFETs: 7

𝑏𝑏
𝑐𝑐

𝑎𝑎

𝑓𝑓
TRs: 10
nFETs: 5
pFETs: 5

TRs: 6
nFETs: 3
pFETs: 3

Complex Logic Gates in CMOS

• How to design
– Inverter

– NAND2

𝑓𝑓 = 𝑥̅𝑥 = 𝑥̅𝑥 ∙ 1 + 𝑥𝑥 ∙ 0 𝑥𝑥 𝑓𝑓 = 𝑥̅𝑥
nFET network

(connects 0 and the output)
pFET network

(connects 1 and the output)

𝑓𝑓 = 𝑎𝑎 ∙ 𝑏𝑏 = 𝑎𝑎 ∙ 𝑏𝑏 ∙ 1 + 𝑎𝑎 ∙ 𝑏𝑏 ∙ 0 = (𝑎𝑎� + 𝑏𝑏�) ∙ 1 + 𝑎𝑎 ∙ 𝑏𝑏 ∙ 0
nFET network

(expressed by 𝑎𝑎 and 𝑏𝑏)
pFET network

(expressed by 𝑎𝑎� and 𝑏𝑏�)

𝑎𝑎 𝑓𝑓 = 𝑎𝑎 ∙ 𝑏𝑏

𝑏𝑏
(𝑎𝑎 ∙ 𝑏𝑏)

(𝑎𝑎� + 𝑏𝑏�)

Complex Logic Gates in CMOS

• How to design 𝑓𝑓
– Express 𝑓𝑓 = 𝐴𝐴 ∙ 1 + 𝐵𝐵 ∙ 0 = 𝐹𝐹(𝑥𝑥1, … , 𝑥𝑥𝑛𝑛) ∙ 1 + 𝐹𝐹(𝑥𝑥1, … , 𝑥𝑥𝑛𝑛) ∙ 0
– Design a pFET network using A = 𝐹𝐹(𝑥𝑥1, … , 𝑥𝑥𝑛𝑛).

• pFETs are ON when the inputs are 0.
– Design an nFET network using B = 𝐹𝐹(𝑥𝑥1, … , 𝑥𝑥𝑛𝑛).

• nFETs are ON when the inputs are 1.

• Example

– 𝑓𝑓 = 𝑎𝑎 ∙ (𝑏𝑏 + 𝑐𝑐) ∙ 1 + 𝑎𝑎 ∙ 𝑏𝑏 + 𝑐𝑐 ∙ 0 = (𝑎𝑎� + 𝑏𝑏� ∙ 𝑐𝑐̅) ∙ 1 + 𝑎𝑎 ∙ 𝑏𝑏 + 𝑐𝑐 ∙ 0

𝑓𝑓 = 𝑎𝑎 ∙ (𝑏𝑏 + 𝑐𝑐)

pFET network nFET network

𝑎𝑎
𝑏𝑏

𝑐𝑐

𝑎𝑎

𝑏𝑏 𝑐𝑐

Complex Logic Gates in CMOS

• Example

𝑓𝑓 = 𝑎𝑎 ∙ (𝑏𝑏 + 𝑐𝑐)

𝑎𝑎
𝑏𝑏

𝑐𝑐

𝑎𝑎

𝑏𝑏 𝑐𝑐

𝑓𝑓
TRs: 6
nFETs: 3
pFETs: 3

Complex Logic Gates in CMOS

• Structured logic design
– Design a given Boolean equation using nFETs and pFETs.

• Assume that only non-inverted input signals are given.

– 𝑎𝑎, 𝑏𝑏, 𝑐𝑐, … are given.
– 𝑎𝑎�, 𝑏𝑏�, 𝑐𝑐̅, … are not given. If you need them, you should generate them.

Complex Logic Gates in CMOS

• Design methodology 1
– When 𝑓𝑓 = 𝑆𝑆(𝑥𝑥1, … , 𝑥𝑥𝑛𝑛) (𝑆𝑆 is a function of non-inverted variables)

• 𝑓𝑓 = 𝑆𝑆̅ = 𝑆𝑆̅ ∙ 1 + 𝑆𝑆 ∙ 0
• Design an nFET network for 𝑆𝑆 using 𝑥𝑥1, … , 𝑥𝑥𝑛𝑛.
• Design a pFET network for 𝑆𝑆̅ using 𝑥𝑥1, … , 𝑥𝑥𝑛𝑛.
• Connect them to 𝑉𝑉𝐷𝐷𝐷𝐷 ,𝑉𝑉𝑆𝑆𝑆𝑆 ,𝑓𝑓.

– Example: 𝑓𝑓 = 𝑎𝑎 ∙ (𝑏𝑏 + 𝑐𝑐)
• 𝑓𝑓 = 𝑎𝑎 ∙ (𝑏𝑏 + 𝑐𝑐) ∙ 1 + a ∙ (𝑏𝑏 + 𝑐𝑐) ∙ 0
• Design an nFET network for a ∙ (𝑏𝑏 + 𝑐𝑐).
• Design a pFET network for 𝑎𝑎 ∙ (𝑏𝑏 + 𝑐𝑐) = 𝑎𝑎� + 𝑏𝑏� ∙ 𝑐𝑐̅.
• Connect them.

𝑎𝑎

𝑏𝑏 𝑐𝑐

𝑎𝑎
𝑏𝑏

𝑐𝑐

Complex Logic Gates in CMOS

• Design methodology 2
– When 𝑓𝑓 = 𝑆𝑆(𝑥𝑥1, … , 𝑥𝑥𝑛𝑛)

• 𝑓𝑓 = 𝑆𝑆̅ = 𝑆𝑆̅ ∙ 1 + 𝑆𝑆 ∙ 0
• Design an nFET network for 𝑆𝑆.
• Design a pFET network with a dual logic of the nFET network.

– Dual of 𝑓𝑓 𝑥𝑥1, … , 𝑥𝑥𝑛𝑛, 0,1,𝐴𝐴𝐴𝐴𝐴𝐴,𝑂𝑂𝑂𝑂 = 𝑓𝑓(𝑥𝑥1, … , 𝑥𝑥𝑛𝑛, 1,0,𝑂𝑂𝑂𝑂,𝐴𝐴𝐴𝐴𝐴𝐴)
• Connect them.

– Example: 𝑓𝑓 = 𝑎𝑎 ∙ (𝑏𝑏 + 𝑐𝑐)
• 𝑓𝑓 = 𝑎𝑎 ∙ (𝑏𝑏 + 𝑐𝑐) ∙ 1 + a ∙ (𝑏𝑏 + 𝑐𝑐) ∙ 0
• Design an nFET network for a ∙ (𝑏𝑏 + 𝑐𝑐).
• Dual of 𝑎𝑎 ∙ 𝑏𝑏 + 𝑐𝑐 = 𝑎𝑎 + 𝑏𝑏 ∙ 𝑐𝑐 = 𝑎𝑎 + 𝑏𝑏 ∙ 𝑐𝑐.
• Connect them.

𝑎𝑎

𝑏𝑏 𝑐𝑐

𝑎𝑎
𝑏𝑏

𝑐𝑐

Complex Logic Gates in CMOS

• Dual logic
– 𝑓𝑓 𝑥𝑥1, … , 𝑥𝑥𝑛𝑛, 0,1,𝐴𝐴𝐴𝐴𝐴𝐴,𝑂𝑂𝑂𝑂 𝐷𝐷 = 𝑓𝑓(𝑥𝑥1, … , 𝑥𝑥𝑛𝑛, 1,0,𝑂𝑂𝑂𝑂,𝐴𝐴𝐴𝐴𝐴𝐴)
– Example

• (𝐴𝐴 ∙ 𝐵𝐵)𝐷𝐷= 𝐴𝐴 + 𝐵𝐵
• (𝐴𝐴 + 𝐵𝐵)𝐷𝐷= 𝐴𝐴 ∙ 𝐵𝐵
• (1 ∙ 𝐴𝐴)𝐷𝐷= 0 + 𝐴𝐴 = 𝐴𝐴
• (1 + 𝐴𝐴)𝐷𝐷= 0 ∙ 𝐴𝐴 = 0
• (0 ∙ 𝐴𝐴)𝐷𝐷= 1 + 𝐴𝐴 =1
• (0 + 𝐴𝐴)𝐷𝐷= 1 ∙ 𝐴𝐴 = 𝐴𝐴

• Principles of the dual logic
– The nFET and the pFET networks work complementarily.
– If the nFET network is ON (i.e., connects 𝑉𝑉𝑆𝑆𝑆𝑆 to the output), the pFET

network is OFF (i.e., disconnect the output from 𝑉𝑉𝐷𝐷𝐷𝐷) and vice versa.
– If two networks are dual, they work complementarily.

• Prove!

Complex Logic Gates in CMOS

• Principles of the dual logic
– 𝑓𝑓 = 𝑆𝑆(𝑥𝑥1, … , 𝑥𝑥𝑛𝑛) = 𝑓𝑓 = 𝑆𝑆(𝑥𝑥1, … , 𝑥𝑥𝑛𝑛) ∙ 1 + 𝑆𝑆(𝑥𝑥1, … , 𝑥𝑥𝑛𝑛) ∙ 0
– 𝑆𝑆(𝑥𝑥1, … , 𝑥𝑥𝑛𝑛) = 𝑆𝑆(𝑥𝑥1, … , 𝑥𝑥𝑛𝑛, 0,1,𝐴𝐴𝐴𝐴𝐴𝐴,𝑂𝑂𝑂𝑂) = 𝑆𝑆 𝑥𝑥1, … , 𝑥𝑥𝑛𝑛, 1,0,𝑂𝑂𝑂𝑂,𝐴𝐴𝐴𝐴𝐴𝐴 =

𝑆𝑆(𝑥𝑥1, … , 𝑥𝑥𝑛𝑛)𝐷𝐷 (De Morgan’s law)
– A pFET is ON when its control variable (𝑥𝑥𝑖𝑖) is 0.
– Thus, the pFET network is the dual of the nFET network.

Complex Logic Gates in CMOS

• Design methodology 3
– When 𝑓𝑓 = 𝑆𝑆(𝑥𝑥1, … , 𝑥𝑥𝑛𝑛) (𝑆𝑆 is a function of non-inverted variables)

• 𝑓𝑓 = 𝑆𝑆 = 𝑆𝑆̅̅
• Design 𝑆𝑆̅ and add an inverter at the output.

– Example: 𝑓𝑓 = 𝑎𝑎 ∙ (𝑏𝑏 + 𝑐𝑐)
• 𝑓𝑓 = 𝑎𝑎 ∙ 𝑏𝑏 + 𝑐𝑐 = 𝑎𝑎 ∙ (𝑏𝑏 + 𝑐𝑐)
• Design 𝑎𝑎 ∙ (𝑏𝑏 + 𝑐𝑐).
• Add an inverter at the output.

𝑎𝑎
𝑏𝑏

𝑐𝑐

𝑎𝑎

𝑏𝑏 𝑐𝑐

𝑓𝑓

Complex Logic Gates in CMOS

• Design methodology 4
– When 𝑓𝑓 = 𝑆𝑆(𝑥𝑥1, … , 𝑥𝑥𝑛𝑛) (𝑆𝑆 is a function of inverted variables)

• Generate inverted inputs (𝑥𝑥1, … , 𝑥𝑥𝑛𝑛) from the given inputs (𝑥𝑥1, … , 𝑥𝑥𝑛𝑛).
• Design 𝑆𝑆 using the inverted inputs.

– Example: 𝑓𝑓 = 𝑎𝑎� ∙ (𝑏𝑏� + 𝑐𝑐̅)
• Inverters are not shown for brevity.

𝑎𝑎�
𝑏𝑏�

𝑐𝑐̅

𝑎𝑎�

𝑏𝑏� 𝑐𝑐̅

𝑓𝑓

Complex Logic Gates in CMOS

• Design methodology 5
– When 𝑓𝑓 = 𝑆𝑆(𝑥𝑥1, … , 𝑥𝑥𝑛𝑛)

• 𝑓𝑓 = 𝑆𝑆(𝑥𝑥1, … , 𝑥𝑥𝑛𝑛) = 𝑆𝑆(𝑥𝑥1, … , 𝑥𝑥𝑛𝑛)𝐷𝐷 = 𝑆𝑆(𝑥𝑥1, … , 𝑥𝑥𝑛𝑛)𝐷𝐷
• Design 𝑆𝑆(𝑥𝑥1, … , 𝑥𝑥𝑛𝑛)𝐷𝐷 using the given inputs.
• Add an inverter at the output.

– Example: 𝑓𝑓 = 𝑎𝑎� + (𝑏𝑏� ∙ 𝑐𝑐̅)
• 𝑓𝑓 = 𝑎𝑎 ∙ (𝑏𝑏 + 𝑐𝑐) = 𝑎𝑎 ∙ (𝑏𝑏 + 𝑐𝑐) 𝑎𝑎

𝑏𝑏

𝑐𝑐

𝑎𝑎

𝑏𝑏 𝑐𝑐

𝑓𝑓

Complex Logic Gates in CMOS

• Design methodology 6
– When 𝑓𝑓 = 𝑆𝑆(𝑥𝑥1, … , 𝑥𝑥𝑛𝑛)

• 𝑓𝑓 = 𝑆𝑆 = 𝑆𝑆̅̅
• Generate inverted inputs (𝑥𝑥1, … , 𝑥𝑥𝑛𝑛) from the given inputs (𝑥𝑥1, … , 𝑥𝑥𝑛𝑛).
• Design 𝑆𝑆̅ using the inverted inputs and add an inverter at the output.

• Design methodology 7

– When 𝑓𝑓 = 𝑆𝑆(𝑥𝑥1, … , 𝑥𝑥𝑛𝑛)
• 𝑓𝑓 = 𝑆𝑆(𝑥𝑥1, … , 𝑥𝑥𝑛𝑛) = 𝑆𝑆(𝑥𝑥1, … , 𝑥𝑥𝑛𝑛)𝐷𝐷
• Design 𝑆𝑆𝐷𝐷 using the given non-inverted inputs (𝑥𝑥1, … , 𝑥𝑥𝑛𝑛).

• Design methodology 8

– When 𝑓𝑓 = 𝑆𝑆(𝑥𝑥1, 𝑥𝑥1, … , 𝑥𝑥𝑛𝑛) or 𝑆𝑆(𝑥𝑥1, 𝑥𝑥1, … , 𝑥𝑥𝑛𝑛)
• Convert the given function into an appropriate form to simplify the logic.
• Design it.

Complex Logic Gates in CMOS

• Examples (assuming only non-inverted inputs are available)
– 𝑓𝑓 = 𝑎𝑎 ∙ 𝑏𝑏 (AND2)

• Design 𝑓𝑓 = 𝑎𝑎 ∙ 𝑏𝑏 and add an inverter at the output. (# TRs: 6)

• Design 𝑓𝑓 = 𝑎𝑎 ∙ 𝑏𝑏 = 𝑎𝑎� + 𝑏𝑏� with two inverters to generate 𝑎𝑎� and 𝑏𝑏�. (# TRs: 8)

– 𝑓𝑓 = 𝑎𝑎� ∙ 𝑏𝑏 + 𝑐𝑐̅ ∙ 𝑑𝑑
• Add two inverters to generate 𝑎𝑎� and 𝑐𝑐̅, then design 𝑓𝑓. (# TRs: 12)

– 𝑓𝑓 = 𝑠̅𝑠 ∙ 𝑎𝑎 + 𝑠𝑠 ∙ 𝑏𝑏 (2:1 MUX)

Complex Logic Gates in CMOS

• Bubble pushing (how to construct a pFET network)
– 𝑓𝑓 = 𝐴𝐴 ∙ 1 + 𝐵𝐵 ∙ 0 = 𝐹𝐹(𝑥𝑥1, … , 𝑥𝑥𝑛𝑛) ∙ 1 + 𝐹𝐹(𝑥𝑥1, … , 𝑥𝑥𝑛𝑛)𝐷𝐷 ∙ 0

𝑎𝑎

𝑏𝑏

𝑓𝑓 = 𝑎𝑎 ∙ 𝑏𝑏 ∙ 0 𝑓𝑓 = (𝑎𝑎 + 𝑏𝑏) ∙ 0

𝑎𝑎 𝑏𝑏
𝑎𝑎

𝑏𝑏

𝑓𝑓 = 𝑎𝑎� ∙ 𝑏𝑏� ∙ 1

𝑎𝑎 𝑏𝑏

𝑓𝑓 = (𝑎𝑎� + 𝑏𝑏�) ∙ 1

𝑎𝑎
𝑏𝑏

𝑎𝑎
𝑏𝑏

𝑎𝑎
𝑏𝑏

𝑎𝑎
𝑏𝑏

Complex Logic Gates in CMOS

• Bubble pushing (how to construct a pFET network)
– Example

𝑎𝑎
𝑏𝑏

𝑐𝑐
𝑑𝑑

𝑒𝑒 𝑓𝑓

=

𝑎𝑎
𝑏𝑏

𝑐𝑐
𝑑𝑑

𝑒𝑒 𝑓𝑓

=

𝑎𝑎
𝑏𝑏

𝑐𝑐
𝑑𝑑

𝑒𝑒 𝑓𝑓

𝑎𝑎 𝑏𝑏

𝑐𝑐 𝑑𝑑

𝑒𝑒

𝑓𝑓

Complex Logic Gates in CMOS

• XOR
– 𝑎𝑎 ⊕ 𝑏𝑏 = 𝑎𝑎 ∙ 𝑏𝑏� + 𝑎𝑎� ∙ 𝑏𝑏 = 𝑎𝑎 ∙ 𝑏𝑏 + 𝑎𝑎� ∙ 𝑏𝑏� (#TRs: 8+4(for the two inverters))

• XNOR
– 𝑎𝑎 ⊕ 𝑏𝑏 = 𝑎𝑎 ∙ 𝑏𝑏 + 𝑎𝑎� ∙ 𝑏𝑏� = 𝑎𝑎 ∙ 𝑏𝑏� + 𝑎𝑎� ∙ 𝑏𝑏 (#TRs: 8+4(for the two inverters))

𝑎𝑎

𝑏𝑏

𝑎𝑎�

𝑏𝑏�

𝑎𝑎 ⊕ 𝑏𝑏

𝑎𝑎 𝑏𝑏

𝑎𝑎� 𝑏𝑏�

𝑎𝑎

𝑏𝑏

𝑎𝑎�

𝑏𝑏�

𝑎𝑎 ⊕ 𝑏𝑏

𝑎𝑎

𝑏𝑏 𝑎𝑎�

𝑏𝑏�

Complex Logic Gates in CMOS

• Structured logic analysis
– Derive a Boolean equation for a given transistor-level schematic.

• Analysis methodology 1

– Convert the nFET network into a Boolean equation (only when the pFET
network is the dual of the nFET network.)

– Notice that the nFET network passes logic 0.
• Example

– 𝑓𝑓 = 𝑎𝑎 ∙ 𝑏𝑏 + 𝑎𝑎� ∙ 𝑏𝑏� = 𝑎𝑎� + 𝑏𝑏� ∙ 𝑎𝑎 + 𝑏𝑏 = 𝑎𝑎 ∙ 𝑏𝑏� + 𝑎𝑎� ∙ 𝑏𝑏

𝑎𝑎

𝑏𝑏

𝑎𝑎�

𝑏𝑏�

𝑎𝑎 ⊕ 𝑏𝑏

𝑎𝑎 𝑏𝑏

𝑎𝑎� 𝑏𝑏�

Complex Logic Gates in CMOS

• Analysis methodology 2
– Identify all the paths from 𝑉𝑉𝑆𝑆𝑆𝑆 to the output (only when the pFET network

is the dual of the nFET network.)
– Merge them into a single Boolean equation.
– Negate the output.

• Example
– Path 1: 𝑏𝑏 ∙ 𝑎𝑎
– Path 2: c ∙ 𝑎𝑎
– Merge: 𝑏𝑏 ∙ 𝑎𝑎 + 𝑐𝑐 ∙ 𝑎𝑎 = 𝑎𝑎 ∙ (𝑏𝑏 + 𝑐𝑐)
– Negate: 𝑎𝑎 ∙ (𝑏𝑏 + 𝑐𝑐)
– 𝑓𝑓 = 𝑎𝑎 ∙ (𝑏𝑏 + 𝑐𝑐)

path 1
path 2

𝑎𝑎
𝑏𝑏

𝑐𝑐

𝑎𝑎

𝑏𝑏 𝑐𝑐

𝑓𝑓

Pass Transistors

• nFET
– 𝑔𝑔 = 0: OFF
– 𝑔𝑔 = 1: ON

• 𝑎𝑎 = 0: 𝑏𝑏 = strong 0
• 𝑎𝑎 = 1: 𝑏𝑏 = weak 1

• pFET
– 𝑔𝑔 = 1: OFF
– 𝑔𝑔 = 0: ON

• 𝑎𝑎 = 0: 𝑏𝑏 = weak 0
• 𝑎𝑎 = 1: 𝑏𝑏 = strong 1

𝑔𝑔

𝑔𝑔

𝑎𝑎 𝑏𝑏

𝑎𝑎 𝑏𝑏

Transmission Gate Circuits

• Transistor circuit

• Behaviors
– When 𝑠𝑠 = 0: Both nFET and pFET are OFF.
– When 𝑠𝑠 = 1: Both nFET and pFET are ON.

• If 𝑥𝑥 = 0, the nFET perfectly transmits it to 𝑦𝑦 (nFET is good at transferring 0.)
• If 𝑥𝑥 = 1, the pFET perfectly transmits it to 𝑦𝑦 (pFET is good at transferring 1.)

• Disadvantage

– Needs 𝑠̅𝑠.
– Does not restore the input signals.

𝑥𝑥 𝑦𝑦

𝑠𝑠

𝑠̅𝑠

𝑠𝑠
𝑥𝑥 𝑦𝑦

𝑠̅𝑠

Transmission Gate Circuits

• Logic design using transmission gates
– MUX: 𝑓𝑓 = 𝑠̅𝑠 ∙ 𝑥𝑥0 + 𝑠𝑠 ∙ 𝑥𝑥1

– XNOR

𝑠̅𝑠

𝑠𝑠

𝑏𝑏

𝑓𝑓

𝑥𝑥0

𝑥𝑥1

𝑓𝑓 = 𝑎𝑎⨁𝑏𝑏

𝑏𝑏�

𝑎𝑎

Pass Transistors vs. Transmission Gates

Pass TR. Transmission Gates

Symbols

Signal strength Strong 0
Weak 1

Weak 0
Strong 1

Strong 0
Strong 1

Area 𝐴𝐴 𝑟𝑟𝑟𝑟 (𝑟𝑟 > 1) 1 + 𝑟𝑟 𝐴𝐴
Control signal 𝑔𝑔 𝑔𝑔 𝑔𝑔, 𝑔̅𝑔

Buffer

• 𝑌𝑌 = 𝐴𝐴

• Buffers are used for
– Signal restoration
– Interconnect optimization

𝐴𝐴 𝑌𝑌 𝐴𝐴 𝑌𝑌

Tristate Inverter

• Truth table

• Symbol & Schematic

EN Y
0 𝑍𝑍
1 𝐴̅𝐴

𝐴𝐴 𝑌𝑌

𝐴𝐴

𝑌𝑌

𝐸𝐸𝐸𝐸

𝐴𝐴 𝑌𝑌

𝐸𝐸𝐸𝐸

𝐸𝐸𝐸𝐸

𝐸𝐸𝐸𝐸

𝐸𝐸𝐸𝐸

𝐴𝐴

Tristate Buffer

• Symbol

• Gate-level schematic

𝐴𝐴 𝑌𝑌

𝐸𝐸𝐸𝐸

𝐴𝐴 𝑌𝑌

𝐸𝐸𝐸𝐸

𝐸𝐸𝐸𝐸

𝐴𝐴 𝑌𝑌

𝐸𝐸𝐸𝐸

Sequential Circuit – D Latch

• Positive-level-sensitive D latch CLK Q
0 hold
1 𝐷𝐷 𝑪𝑪𝑪𝑪𝑪𝑪

𝑉𝑉𝐷𝐷𝐷𝐷

𝑡𝑡

𝑉𝑉𝐷𝐷𝐷𝐷

𝑡𝑡

0

𝑫𝑫

𝑉𝑉𝐷𝐷𝐷𝐷

𝑡𝑡

𝑸𝑸

Transparent

Capture

Hold

Sequential Circuit – D Latch

• Schematic

𝑄𝑄�

𝑄𝑄

𝐷𝐷
𝐶𝐶𝐶𝐶𝐶𝐶

𝐶𝐶𝐶𝐶𝐶𝐶

𝐶𝐶𝐶𝐶𝐶𝐶

𝐶𝐶𝐶𝐶𝐶𝐶

Sequential Circuit – D Flip-Flop

• Positive-edge-triggered D flip-flop

𝑉𝑉𝐷𝐷𝐷𝐷

𝑡𝑡

𝑉𝑉𝐷𝐷𝐷𝐷

𝑡𝑡

0

𝑉𝑉𝐷𝐷𝐷𝐷

𝑡𝑡

Capture

Hold

𝑪𝑪𝑪𝑪𝑪𝑪

𝑫𝑫

𝑸𝑸

CLK Q
0, 1 hold
↑ catch 𝐷𝐷

Sequential Circuit – D Flip-Flop

• Schematic

𝐷𝐷
𝐶𝐶𝐶𝐶𝐶𝐶

𝐶𝐶𝐶𝐶𝐶𝐶

𝐶𝐶𝐶𝐶𝐶𝐶

𝐶𝐶𝐶𝐶𝐶𝐶
𝑄𝑄�

𝑄𝑄
𝐶𝐶𝐶𝐶𝐶𝐶

𝐶𝐶𝐶𝐶𝐶𝐶

𝐶𝐶𝐶𝐶𝐶𝐶

𝐶𝐶𝐶𝐶𝐶𝐶

Sequential Circuit

• Example
– Inputs: 𝐷𝐷,𝐴𝐴𝐴𝐴𝐴𝐴,𝐶𝐶𝐶𝐶𝐶𝐶,𝐶𝐶𝐶𝐶𝐶𝐶
– Outputs: 𝑄𝑄,𝑄𝑄�

𝑄𝑄

𝑄𝑄�

𝐶𝐶𝐶𝐶𝐶𝐶

𝐶𝐶𝐶𝐶𝐶𝐶
𝐷𝐷

𝐴𝐴𝐴𝐴𝐴𝐴

𝐶𝐶𝐶𝐶𝐶𝐶

𝐶𝐶𝐶𝐶𝐶𝐶

	Logic Design with MOSFETs
	References
	Goal
	Signals and Wires
	Ideal Switches
	Series/Parallel Connections of Switches
	Inverter Design with Switches
	Inverter Design with Switches
	MOSFETs as Switches
	MOSFETs as Switches
	MOSFETs as Switches
	Pass Characteristics
	Pass Characteristics
	Pass Characteristics
	Pass Characteristics
	Basic Logic Gates in CMOS
	Basic Logic Gates in CMOS
	Basic Logic Gates in CMOS
	Basic Logic Gates in CMOS
	Basic Logic Gates in CMOS
	Basic Logic Gates in CMOS
	Basic Logic Gates in CMOS
	Complex Logic Gates in CMOS
	Complex Logic Gates in CMOS
	Complex Logic Gates in CMOS
	Complex Logic Gates in CMOS
	Complex Logic Gates in CMOS
	Complex Logic Gates in CMOS
	Complex Logic Gates in CMOS
	Complex Logic Gates in CMOS
	Complex Logic Gates in CMOS
	Complex Logic Gates in CMOS
	Complex Logic Gates in CMOS
	Complex Logic Gates in CMOS
	Complex Logic Gates in CMOS
	Complex Logic Gates in CMOS
	Complex Logic Gates in CMOS
	Complex Logic Gates in CMOS
	Complex Logic Gates in CMOS
	Complex Logic Gates in CMOS
	Complex Logic Gates in CMOS
	Pass Transistors
	Transmission Gate Circuits
	Transmission Gate Circuits
	Pass Transistors vs. Transmission Gates
	Buffer
	Tristate Inverter
	Tristate Buffer
	Sequential Circuit – D Latch
	Sequential Circuit – D Latch
	Sequential Circuit – D Flip-Flop
	Sequential Circuit – D Flip-Flop
	Sequential Circuit

