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Goal 

• Design logic gates using MOSFETs (NMOS and PMOS) 



Signals and Wires 

• Signals 
– 0 = 𝑉𝑉𝑆𝑆𝑆𝑆 = Ground = GND = Low = 0V 
– 1 = 𝑉𝑉𝐷𝐷𝐷𝐷 = Power = PWR = High = 5V, 3.3V, 1.5V, 1.2V, 1.0V, etc. 

 
 
 

• Wires 

𝑉𝑉𝐷𝐷𝐷𝐷 

a 

Wire 1 

b Wire 2 

No connection 

a 

a 

Connection 

a 

a 



Ideal Switches 

• Switch 
 
 
 

• Assert-high switch 
 
 
 
 

• Assert-low switch 

Control Control 

𝑥𝑥 𝑦𝑦 𝑥𝑥 𝑦𝑦 

Electrically short Electrically open 

𝑨𝑨 = 𝟏𝟏 

𝑥𝑥 𝑦𝑦 = 𝑥𝑥 𝑥𝑥 𝑦𝑦 

𝑨𝑨 = 𝟎𝟎 

Open (𝑦𝑦 is undefined) Closed (𝒚𝒚 = 𝒙𝒙) 

𝑨𝑨 = 𝟏𝟏 

𝑥𝑥 𝑦𝑦 = 𝑥𝑥 𝑥𝑥 𝑦𝑦 

𝑨𝑨 = 𝟎𝟎 

Open (𝑦𝑦 is undefined) Closed (𝒚𝒚 = 𝒙𝒙) 



Series/Parallel Connections of Switches 

• Series 
 
 
 
 
 

• Parallel 

𝑎𝑎 𝑏𝑏 

𝑥𝑥 
𝑥𝑥 ∙ 𝑎𝑎 

𝑦𝑦 = 𝑥𝑥 ∙ 𝑎𝑎 ∙ 𝑏𝑏 = 𝑥𝑥 ∙ (𝑎𝑎 ∙ 𝑏𝑏) 

AND operation 
(𝑦𝑦 is defined only when 𝑎𝑎 = 1 and 𝑏𝑏 = 1) 

(𝑦𝑦 is undefined if 𝑎𝑎 = 0 or 𝑏𝑏 = 0) 

𝑏𝑏 

𝑎𝑎 

𝑥𝑥 𝑥𝑥 ∙ 𝑎𝑎 + 𝑥𝑥 ∙ 𝑏𝑏 = 𝑥𝑥 ∙ (𝑎𝑎 + 𝑏𝑏) 

OR operation 
(𝑦𝑦 is defined only when 𝑎𝑎 = 1 or 𝑏𝑏 = 1) 

(𝑦𝑦 is undefined if 𝑎𝑎 = 0 and 𝑏𝑏 = 0) 

a b y 
0 0 

undefined 0 1 
1 0 
1 1 𝑥𝑥 

a b y 
0 0 undefined 
0 1 

𝑥𝑥 1 0 
1 1 



Inverter Design with Switches 

• Inverter 
– The output is defined both when 𝑎𝑎 = 0 and when 𝑎𝑎 = 1. 

𝑎𝑎 

𝑎𝑎 

1 

0 

1 ∙ 𝑎𝑎� 

0 ∙ 𝑎𝑎 

𝑦𝑦 = 1 ∙ 𝑎𝑎� + 0 ∙ 𝑎𝑎 = 𝑎𝑎� 
a y 
0 1 
1 0 



Inverter Design with Switches 

• Two inverter designs 

𝑎𝑎 

𝑎𝑎 

1 

0 

𝑦𝑦 

𝑎𝑎� 

𝑎𝑎� 

0 

1 

𝑦𝑦 Why? 



MOSFETs as Switches 

• MOSFET: Metal-Oxide-Semiconductor Field-Effect Transistor 
– n-channel MOSFET = nFET = NMOS 
– p-channel MOSFET = pFET = PMOS 
– Complementary MOS: CMOS 

 
• Symbols 

nFET pFET 

Gate 

Source Drain Drain Source 

Gate 

= = 

𝑉𝑉𝐺𝐺 

𝑉𝑉𝑆𝑆 𝑉𝑉𝐷𝐷 𝑉𝑉𝐷𝐷 𝑉𝑉𝑆𝑆 

𝑉𝑉𝐺𝐺 

(𝑉𝑉𝐷𝐷 ≥ 𝑉𝑉𝑆𝑆) (𝑉𝑉𝑆𝑆 ≥ 𝑉𝑉𝐷𝐷) 



MOSFETs as Switches 

• Threshold voltage 
– nFET: 𝑉𝑉𝑇𝑇𝑛𝑛 > 0 
– pFET: 𝑉𝑉𝑇𝑇𝑝𝑝 < 0 

 
• nFET 

– OFF: 𝑉𝑉𝐺𝐺𝐺𝐺𝑛𝑛 ≤ 𝑉𝑉𝑇𝑇𝑛𝑛 
– ON: 𝑉𝑉𝐺𝐺𝐺𝐺𝑛𝑛 > 𝑉𝑉𝑇𝑇𝑛𝑛 

 
• pFET 

– OFF: 𝑉𝑉𝑆𝑆𝑆𝑆𝑝𝑝 ≤ |𝑉𝑉𝑇𝑇𝑝𝑝| 

– ON: 𝑉𝑉𝑆𝑆𝐺𝐺𝑝𝑝 > |𝑉𝑉𝑇𝑇𝑝𝑝| 

Gate 

Source 

Drain 

Source 

Drain 

Gate 

𝑉𝑉𝐴𝐴 

𝑉𝑉𝐴𝐴 

Logic translation 
0 

𝑉𝑉𝑇𝑇𝑛𝑛 

𝑉𝑉𝐷𝐷𝐷𝐷 

𝐴𝐴 = 0: Mn OFF 

Mn 

Mp 

𝐴𝐴 = 1: Mn ON 

𝑉𝑉𝐷𝐷𝐷𝐷 𝑉𝑉𝐴𝐴 

Logic translation 
0 

𝑉𝑉𝐷𝐷𝐷𝐷 − |𝑉𝑉𝑇𝑇𝑝𝑝| 
𝑉𝑉𝐷𝐷𝐷𝐷 

𝐴𝐴 = 0: Mp ON 

𝐴𝐴 = 1: Mp OFF 

𝑉𝑉𝐴𝐴 



MOSFETs as Switches 
• Example (PTM High-Performance 45nm High-K Metal Gate) 

– 𝑉𝑉𝐷𝐷𝐷𝐷: 1.0V 
– 𝑉𝑉𝑇𝑇𝑛𝑛: 0.46893V 
– 𝑉𝑉𝑇𝑇𝑝𝑝: -0.49158V 

 
• Example (PTM High-Performance 32nm High-K Metal Gate) 

– 𝑉𝑉𝐷𝐷𝐷𝐷: 0.9V 
– 𝑉𝑉𝑇𝑇𝑛𝑛: 0.49396V 
– 𝑉𝑉𝑇𝑇𝑝𝑝: -0.49155V 

 
• Example (PTM High-Performance 22nm High-K Metal Gate) 

– 𝑉𝑉𝐷𝐷𝐷𝐷: 0.8V 
– 𝑉𝑉𝑇𝑇𝑛𝑛: 0.50308V 
– 𝑉𝑉𝑇𝑇𝑝𝑝: -0.4606V 



Pass Characteristics 

• nFET 
 
 
 
 
 

• pFET 

𝑉𝑉𝐺𝐺 = 𝑉𝑉𝐷𝐷𝐷𝐷 

𝑉𝑉𝑆𝑆 = 𝑉𝑉𝑜𝑜𝑜𝑜𝑜𝑜 

𝑉𝑉𝐷𝐷 = 𝑉𝑉𝑖𝑖𝑖𝑖 
𝑽𝑽𝒊𝒊𝒊𝒊 ↑ 𝑽𝑽𝑮𝑮𝑮𝑮 ↓ 𝑽𝑽𝒐𝒐𝒐𝒐𝒐𝒐 ↑ 

0 𝑉𝑉𝐷𝐷𝐷𝐷 0 

0.1 𝑉𝑉𝐷𝐷𝐷𝐷 - 0.1 0.1 

... ... ... 

𝑉𝑉𝐷𝐷𝐷𝐷 − 𝑉𝑉𝑇𝑇𝑛𝑛 𝑉𝑉𝑇𝑇𝑛𝑛 𝑉𝑉𝐷𝐷𝐷𝐷 − 𝑉𝑉𝑇𝑇𝑛𝑛 

𝑉𝑉𝐷𝐷𝐷𝐷 𝑉𝑉𝑇𝑇𝑛𝑛 𝑉𝑉𝐷𝐷𝐷𝐷 − 𝑉𝑉𝑇𝑇𝑛𝑛 

Logic 0 transfer: strong logic 0 

Logic 1 transfer: weak logic 1 

𝑉𝑉𝐺𝐺 = 0 
𝑽𝑽𝒊𝒊𝒊𝒊 ↓ 𝑽𝑽𝑺𝑺𝑺𝑺 ↓ 𝑽𝑽𝒐𝒐𝒐𝒐𝒐𝒐 ↓ 
𝑉𝑉𝐷𝐷𝐷𝐷 𝑉𝑉𝐷𝐷𝐷𝐷 𝑉𝑉𝐷𝐷𝐷𝐷 

𝑉𝑉𝐷𝐷𝐷𝐷 − 𝜀𝜀 𝑉𝑉𝐷𝐷𝐷𝐷 − 𝜀𝜀 𝑉𝑉𝐷𝐷𝐷𝐷 − 𝜀𝜀 

... ... ... 

|𝑉𝑉𝑇𝑇𝑝𝑝| 𝑉𝑉𝑇𝑇𝑝𝑝  |𝑉𝑉𝑇𝑇𝑝𝑝| 

0 0 |𝑉𝑉𝑇𝑇𝑝𝑝| Logic 0 transfer: weak logic 0 

Logic 1 transfer: strong logic 1 

𝑉𝑉𝑆𝑆 = 𝑉𝑉𝑖𝑖𝑖𝑖 

𝑉𝑉𝐷𝐷 = 𝑉𝑉𝑜𝑜𝑜𝑜𝑜𝑜 



Pass Characteristics 

• SPICE simulation (45nm technology) 
– nFET 

𝑉𝑉𝐷𝐷𝐷𝐷 

𝑉𝑉𝑜𝑜𝑜𝑜𝑜𝑜 

𝑉𝑉𝑖𝑖𝑖𝑖 



Pass Characteristics 

• SPICE simulation (45nm technology) 
– pFET 

0 

𝑉𝑉𝑜𝑜𝑜𝑜𝑜𝑜 

𝑉𝑉𝑖𝑖𝑖𝑖 



Pass Characteristics 

• nFET 
– Strong logic 0 transfer 
– Weak logic 1 transfer 

 
• pFET 

– Strong logic 1 transfer 
– Weak logic 0 transfer 

 
• CMOS 

– Use pFETs to pass logic 1. 
– Use nFETs to pass logic 0. 



Basic Logic Gates in CMOS 

• Principles 
– Construct the nFET network using only nFETs and the pFET network 

using only pFETs. 
– If the output is 1, the pFET network connects 𝑉𝑉𝐷𝐷𝐷𝐷 to the output and the 

nFET network disconnects 𝑉𝑉𝑆𝑆𝑆𝑆 and the output. 
– If the output is 0, the nFET network connects 𝑉𝑉𝑆𝑆𝑆𝑆 to the output and the 

pFET network disconnects 𝑉𝑉𝐷𝐷𝐷𝐷 and the output. 

pFET network 

𝑓𝑓 (output) 

𝑉𝑉𝐷𝐷𝐷𝐷 

𝑎𝑎, 𝑏𝑏, 𝑐𝑐, … (inputs) 

nFET network 



Basic Logic Gates in CMOS 

• Inverter 

𝑥𝑥 𝑓𝑓 = 𝑥̅𝑥 

0 𝑓𝑓 = 1 1 𝑓𝑓 = 0 

off 

off 

𝑓𝑓 = 𝑥̅𝑥 ∙ 1 + 𝑥𝑥 ∙ 0 = 𝑥̅𝑥 

# TRs: 2 
nFET: 1 
pFET: 1 



Basic Logic Gates in CMOS 

• SPICE simulation 



Basic Logic Gates in CMOS 

• Two-input NAND (NAND2) 

𝑓𝑓 = 𝑎𝑎� ∙ 𝑏𝑏� ∙ 1 + 𝑎𝑎� ∙ 𝑏𝑏 ∙ 1 + 𝑎𝑎 ∙ 𝑏𝑏� ∙ 1 + 𝑎𝑎 ∙ 𝑏𝑏 ∙ 0 = 𝑎𝑎� + 𝑏𝑏� = 𝑎𝑎 ∙ 𝑏𝑏 

𝑎𝑎 𝑓𝑓 = 𝑎𝑎 ∙ 𝑏𝑏 

𝑏𝑏 

0 𝑓𝑓 = 1 

0 

1 𝑓𝑓 = 0 

1 

off 

off 

0 𝑓𝑓 = 1 

1 

off 

off 

off off 

# TRs: 4 
nFETs: 2 
pFETs: 2 



Basic Logic Gates in CMOS 

• SPICE simulation 



Basic Logic Gates in CMOS 

• Two-input NOR (NOR2) 

𝑎𝑎 
𝑓𝑓 = 𝑎𝑎 + 𝑏𝑏 

𝑓𝑓 = 𝑎𝑎� ∙ 𝑏𝑏� ∙ 1 + 𝑎𝑎� ∙ 𝑏𝑏 ∙ 0 + 𝑎𝑎 ∙ 𝑏𝑏� ∙ 0 + 𝑎𝑎 ∙ 𝑏𝑏 ∙ 0 = 𝑎𝑎� ∙ 𝑏𝑏� = 𝑎𝑎 + 𝑏𝑏 

𝑏𝑏 

# TRs: 4 
nFETs: 2 
pFETs: 2 

𝑎𝑎 

𝑏𝑏 

0 
𝑓𝑓 = 1 

0 0 

0 

off off 

0 

1 0 

1 

off 

off 
𝑓𝑓 = 0 

1 
𝑓𝑓 = 0 

1 1 

1 

off 

off 



Basic Logic Gates in CMOS 

• SPICE simulation 



Complex Logic Gates in CMOS 

• Example 
 

• Using logic gates 
 
 
 

• Using logic gates 
 
 
 

• Using TRs 

𝑓𝑓 = 𝑎𝑎 ∙ (𝑏𝑏 + 𝑐𝑐) 

𝑏𝑏 
𝑐𝑐 

𝑎𝑎 

𝑓𝑓 
# TRs: 14 
nFETs: 7 
pFETs: 7 

𝑏𝑏 
𝑐𝑐 

𝑎𝑎 

𝑓𝑓 
# TRs: 10 
nFETs: 5 
pFETs: 5 

# TRs: 6 
nFETs: 3 
pFETs: 3 



Complex Logic Gates in CMOS 

• How to design 
– Inverter 

 
 
 

– NAND2 

𝑓𝑓 = 𝑥̅𝑥 = 𝑥̅𝑥 ∙ 1 + 𝑥𝑥 ∙ 0 𝑥𝑥 𝑓𝑓 = 𝑥̅𝑥 
nFET network 

(connects 0 and the output) 
pFET network 

(connects 1 and the output) 

𝑓𝑓 = 𝑎𝑎 ∙ 𝑏𝑏 = 𝑎𝑎 ∙ 𝑏𝑏 ∙ 1 + 𝑎𝑎 ∙ 𝑏𝑏 ∙ 0 = (𝑎𝑎� + 𝑏𝑏�) ∙ 1 + 𝑎𝑎 ∙ 𝑏𝑏 ∙ 0 
nFET network 

(expressed by 𝑎𝑎 and 𝑏𝑏) 
pFET network 

(expressed by 𝑎𝑎� and 𝑏𝑏�) 

𝑎𝑎 𝑓𝑓 = 𝑎𝑎 ∙ 𝑏𝑏 

𝑏𝑏 
(𝑎𝑎 ∙ 𝑏𝑏) 

(𝑎𝑎� + 𝑏𝑏�) 



Complex Logic Gates in CMOS 

• How to design 𝑓𝑓 
– Express 𝑓𝑓 = 𝐴𝐴 ∙ 1 + 𝐵𝐵 ∙ 0 = 𝐹𝐹(𝑥𝑥1, … , 𝑥𝑥𝑛𝑛) ∙ 1 + 𝐹𝐹(𝑥𝑥1, … , 𝑥𝑥𝑛𝑛) ∙ 0 
– Design a pFET network using A = 𝐹𝐹(𝑥𝑥1, … , 𝑥𝑥𝑛𝑛). 

• pFETs are ON when the inputs are 0. 
– Design an nFET network using B = 𝐹𝐹(𝑥𝑥1, … , 𝑥𝑥𝑛𝑛). 

• nFETs are ON when the inputs are 1. 

• Example 
 
– 𝑓𝑓 = 𝑎𝑎 ∙ (𝑏𝑏 + 𝑐𝑐) ∙ 1 + 𝑎𝑎 ∙ 𝑏𝑏 + 𝑐𝑐 ∙ 0 = (𝑎𝑎� + 𝑏𝑏� ∙ 𝑐𝑐̅) ∙ 1 + 𝑎𝑎 ∙ 𝑏𝑏 + 𝑐𝑐 ∙ 0 

𝑓𝑓 = 𝑎𝑎 ∙ (𝑏𝑏 + 𝑐𝑐) 

pFET network nFET network 

𝑎𝑎 
𝑏𝑏 

𝑐𝑐 

𝑎𝑎 

𝑏𝑏 𝑐𝑐 



Complex Logic Gates in CMOS 

• Example 

𝑓𝑓 = 𝑎𝑎 ∙ (𝑏𝑏 + 𝑐𝑐) 

𝑎𝑎 
𝑏𝑏 

𝑐𝑐 

𝑎𝑎 

𝑏𝑏 𝑐𝑐 

𝑓𝑓 
# TRs: 6 
nFETs: 3 
pFETs: 3 



Complex Logic Gates in CMOS 

• Structured logic design 
– Design a given Boolean equation using nFETs and pFETs. 

 
• Assume that only non-inverted input signals are given. 

– 𝑎𝑎, 𝑏𝑏, 𝑐𝑐, … are given. 
– 𝑎𝑎�, 𝑏𝑏�, 𝑐𝑐̅, … are not given. If you need them, you should generate them. 



Complex Logic Gates in CMOS 

• Design methodology 1 
– When 𝑓𝑓 = 𝑆𝑆(𝑥𝑥1, … , 𝑥𝑥𝑛𝑛) (𝑆𝑆 is a function of non-inverted variables) 

• 𝑓𝑓 = 𝑆𝑆̅ = 𝑆𝑆̅ ∙ 1 + 𝑆𝑆 ∙ 0 
• Design an nFET network for 𝑆𝑆 using 𝑥𝑥1, … , 𝑥𝑥𝑛𝑛. 
• Design a pFET network for 𝑆𝑆̅ using 𝑥𝑥1, … , 𝑥𝑥𝑛𝑛. 
• Connect them to 𝑉𝑉𝐷𝐷𝐷𝐷 ,𝑉𝑉𝑆𝑆𝑆𝑆 ,𝑓𝑓. 

– Example: 𝑓𝑓 = 𝑎𝑎 ∙ (𝑏𝑏 + 𝑐𝑐) 
• 𝑓𝑓 = 𝑎𝑎 ∙ (𝑏𝑏 + 𝑐𝑐) ∙ 1 + a ∙ (𝑏𝑏 + 𝑐𝑐) ∙ 0 
• Design an nFET network for a ∙ (𝑏𝑏 + 𝑐𝑐). 
• Design a pFET network for 𝑎𝑎 ∙ (𝑏𝑏 + 𝑐𝑐) = 𝑎𝑎� + 𝑏𝑏� ∙ 𝑐𝑐̅. 
• Connect them. 

𝑎𝑎 

𝑏𝑏 𝑐𝑐 

𝑎𝑎 
𝑏𝑏 

𝑐𝑐 



Complex Logic Gates in CMOS 

• Design methodology 2 
– When 𝑓𝑓 = 𝑆𝑆(𝑥𝑥1, … , 𝑥𝑥𝑛𝑛) 

• 𝑓𝑓 = 𝑆𝑆̅ = 𝑆𝑆̅ ∙ 1 + 𝑆𝑆 ∙ 0 
• Design an nFET network for 𝑆𝑆. 
• Design a pFET network with a dual logic of the nFET network. 

– Dual of 𝑓𝑓 𝑥𝑥1, … , 𝑥𝑥𝑛𝑛, 0,1,𝐴𝐴𝐴𝐴𝐴𝐴,𝑂𝑂𝑂𝑂 = 𝑓𝑓(𝑥𝑥1, … , 𝑥𝑥𝑛𝑛, 1,0,𝑂𝑂𝑂𝑂,𝐴𝐴𝐴𝐴𝐴𝐴) 
• Connect them. 

– Example: 𝑓𝑓 = 𝑎𝑎 ∙ (𝑏𝑏 + 𝑐𝑐) 
• 𝑓𝑓 = 𝑎𝑎 ∙ (𝑏𝑏 + 𝑐𝑐) ∙ 1 + a ∙ (𝑏𝑏 + 𝑐𝑐) ∙ 0 
• Design an nFET network for a ∙ (𝑏𝑏 + 𝑐𝑐). 
• Dual of 𝑎𝑎 ∙ 𝑏𝑏 + 𝑐𝑐 = 𝑎𝑎 + 𝑏𝑏 ∙ 𝑐𝑐 = 𝑎𝑎 + 𝑏𝑏 ∙ 𝑐𝑐. 
• Connect them. 

𝑎𝑎 

𝑏𝑏 𝑐𝑐 

𝑎𝑎 
𝑏𝑏 

𝑐𝑐 



Complex Logic Gates in CMOS 

• Dual logic 
– 𝑓𝑓 𝑥𝑥1, … , 𝑥𝑥𝑛𝑛, 0,1,𝐴𝐴𝐴𝐴𝐴𝐴,𝑂𝑂𝑂𝑂 𝐷𝐷 = 𝑓𝑓(𝑥𝑥1, … , 𝑥𝑥𝑛𝑛, 1,0,𝑂𝑂𝑂𝑂,𝐴𝐴𝐴𝐴𝐴𝐴) 
– Example 

• (𝐴𝐴 ∙ 𝐵𝐵)𝐷𝐷= 𝐴𝐴 + 𝐵𝐵 
• (𝐴𝐴 + 𝐵𝐵)𝐷𝐷= 𝐴𝐴 ∙ 𝐵𝐵 
• (1 ∙ 𝐴𝐴)𝐷𝐷= 0 + 𝐴𝐴 = 𝐴𝐴 
• (1 + 𝐴𝐴)𝐷𝐷= 0 ∙ 𝐴𝐴 = 0 
• (0 ∙ 𝐴𝐴)𝐷𝐷= 1 + 𝐴𝐴 =1 
• (0 + 𝐴𝐴)𝐷𝐷= 1 ∙ 𝐴𝐴 = 𝐴𝐴 

• Principles of the dual logic 
– The nFET and the pFET networks work complementarily. 
– If the nFET network is ON (i.e., connects 𝑉𝑉𝑆𝑆𝑆𝑆 to the output), the pFET 

network is OFF (i.e., disconnect the output from 𝑉𝑉𝐷𝐷𝐷𝐷) and vice versa. 
– If two networks are dual, they work complementarily. 

• Prove! 



Complex Logic Gates in CMOS 

• Principles of the dual logic 
– 𝑓𝑓 = 𝑆𝑆(𝑥𝑥1, … , 𝑥𝑥𝑛𝑛) = 𝑓𝑓 = 𝑆𝑆(𝑥𝑥1, … , 𝑥𝑥𝑛𝑛) ∙ 1 + 𝑆𝑆(𝑥𝑥1, … , 𝑥𝑥𝑛𝑛) ∙ 0 
– 𝑆𝑆(𝑥𝑥1, … , 𝑥𝑥𝑛𝑛) = 𝑆𝑆(𝑥𝑥1, … , 𝑥𝑥𝑛𝑛, 0,1,𝐴𝐴𝐴𝐴𝐴𝐴,𝑂𝑂𝑂𝑂) = 𝑆𝑆 𝑥𝑥1, … , 𝑥𝑥𝑛𝑛, 1,0,𝑂𝑂𝑂𝑂,𝐴𝐴𝐴𝐴𝐴𝐴 =

𝑆𝑆(𝑥𝑥1, … , 𝑥𝑥𝑛𝑛)𝐷𝐷   (De Morgan’s law) 
– A pFET is ON when its control variable (𝑥𝑥𝑖𝑖) is 0. 
– Thus, the pFET network is the dual of the nFET network. 



Complex Logic Gates in CMOS 

• Design methodology 3 
– When 𝑓𝑓 = 𝑆𝑆(𝑥𝑥1, … , 𝑥𝑥𝑛𝑛) (𝑆𝑆 is a function of non-inverted variables) 

• 𝑓𝑓 = 𝑆𝑆 = 𝑆𝑆̅̅ 
• Design 𝑆𝑆̅ and add an inverter at the output. 

– Example: 𝑓𝑓 = 𝑎𝑎 ∙ (𝑏𝑏 + 𝑐𝑐) 
• 𝑓𝑓 = 𝑎𝑎 ∙ 𝑏𝑏 + 𝑐𝑐 = 𝑎𝑎 ∙ (𝑏𝑏 + 𝑐𝑐) 
• Design 𝑎𝑎 ∙ (𝑏𝑏 + 𝑐𝑐). 
• Add an inverter at the output. 

𝑎𝑎 
𝑏𝑏 

𝑐𝑐 

𝑎𝑎 

𝑏𝑏 𝑐𝑐 

𝑓𝑓 



Complex Logic Gates in CMOS 

• Design methodology 4 
– When 𝑓𝑓 = 𝑆𝑆(𝑥𝑥1, … , 𝑥𝑥𝑛𝑛) (𝑆𝑆 is a function of inverted variables) 

• Generate inverted inputs (𝑥𝑥1, … , 𝑥𝑥𝑛𝑛) from the given inputs (𝑥𝑥1, … , 𝑥𝑥𝑛𝑛). 
• Design 𝑆𝑆 using the inverted inputs. 

– Example: 𝑓𝑓 = 𝑎𝑎� ∙ (𝑏𝑏� + 𝑐𝑐̅) 
• Inverters are not shown for brevity. 

𝑎𝑎� 
𝑏𝑏� 

𝑐𝑐̅ 

𝑎𝑎� 

𝑏𝑏� 𝑐𝑐̅ 

𝑓𝑓 



Complex Logic Gates in CMOS 

• Design methodology 5 
– When 𝑓𝑓 = 𝑆𝑆(𝑥𝑥1, … , 𝑥𝑥𝑛𝑛) 

• 𝑓𝑓 = 𝑆𝑆(𝑥𝑥1, … , 𝑥𝑥𝑛𝑛) = 𝑆𝑆(𝑥𝑥1, … , 𝑥𝑥𝑛𝑛)𝐷𝐷 = 𝑆𝑆(𝑥𝑥1, … , 𝑥𝑥𝑛𝑛)𝐷𝐷 
• Design 𝑆𝑆(𝑥𝑥1, … , 𝑥𝑥𝑛𝑛)𝐷𝐷 using the given inputs. 
• Add an inverter at the output. 

– Example: 𝑓𝑓 = 𝑎𝑎� + (𝑏𝑏� ∙ 𝑐𝑐̅) 
• 𝑓𝑓 = 𝑎𝑎 ∙ (𝑏𝑏 + 𝑐𝑐) = 𝑎𝑎 ∙ (𝑏𝑏 + 𝑐𝑐) 𝑎𝑎 

𝑏𝑏 

𝑐𝑐 

𝑎𝑎 

𝑏𝑏 𝑐𝑐 

𝑓𝑓 



Complex Logic Gates in CMOS 

• Design methodology 6 
– When 𝑓𝑓 = 𝑆𝑆(𝑥𝑥1, … , 𝑥𝑥𝑛𝑛) 

• 𝑓𝑓 = 𝑆𝑆 = 𝑆𝑆̅̅ 
• Generate inverted inputs (𝑥𝑥1, … , 𝑥𝑥𝑛𝑛) from the given inputs (𝑥𝑥1, … , 𝑥𝑥𝑛𝑛). 
• Design 𝑆𝑆̅ using the inverted inputs and add an inverter at the output. 

 
• Design methodology 7 

– When 𝑓𝑓 = 𝑆𝑆(𝑥𝑥1, … , 𝑥𝑥𝑛𝑛) 
• 𝑓𝑓 = 𝑆𝑆(𝑥𝑥1, … , 𝑥𝑥𝑛𝑛) = 𝑆𝑆(𝑥𝑥1, … , 𝑥𝑥𝑛𝑛)𝐷𝐷 
• Design 𝑆𝑆𝐷𝐷 using the given non-inverted inputs (𝑥𝑥1, … , 𝑥𝑥𝑛𝑛). 

 
• Design methodology 8 

– When 𝑓𝑓 = 𝑆𝑆(𝑥𝑥1, 𝑥𝑥1, … , 𝑥𝑥𝑛𝑛) or 𝑆𝑆(𝑥𝑥1, 𝑥𝑥1, … , 𝑥𝑥𝑛𝑛) 
• Convert the given function into an appropriate form to simplify the logic. 
• Design it. 



Complex Logic Gates in CMOS 

• Examples (assuming only non-inverted inputs are available) 
– 𝑓𝑓 = 𝑎𝑎 ∙ 𝑏𝑏 (AND2) 

• Design 𝑓𝑓 = 𝑎𝑎 ∙ 𝑏𝑏 and add an inverter at the output. (# TRs: 6) 

• Design 𝑓𝑓 = 𝑎𝑎 ∙ 𝑏𝑏 = 𝑎𝑎� + 𝑏𝑏� with two inverters to generate 𝑎𝑎� and 𝑏𝑏�. (# TRs: 8) 
 

– 𝑓𝑓 = 𝑎𝑎� ∙ 𝑏𝑏 + 𝑐𝑐̅ ∙ 𝑑𝑑 
• Add two inverters to generate 𝑎𝑎� and 𝑐𝑐̅, then design 𝑓𝑓. (# TRs: 12) 

 
– 𝑓𝑓 = 𝑠̅𝑠 ∙ 𝑎𝑎 + 𝑠𝑠 ∙ 𝑏𝑏 (2:1 MUX) 



Complex Logic Gates in CMOS 

• Bubble pushing (how to construct a pFET network) 
– 𝑓𝑓 = 𝐴𝐴 ∙ 1 + 𝐵𝐵 ∙ 0 = 𝐹𝐹(𝑥𝑥1, … , 𝑥𝑥𝑛𝑛) ∙ 1 + 𝐹𝐹(𝑥𝑥1, … , 𝑥𝑥𝑛𝑛)𝐷𝐷 ∙ 0 

𝑎𝑎 

𝑏𝑏 

𝑓𝑓 = 𝑎𝑎 ∙ 𝑏𝑏 ∙ 0 𝑓𝑓 = (𝑎𝑎 + 𝑏𝑏) ∙ 0 

𝑎𝑎 𝑏𝑏 
𝑎𝑎 

𝑏𝑏 

𝑓𝑓 = 𝑎𝑎� ∙ 𝑏𝑏� ∙ 1 

𝑎𝑎 𝑏𝑏 

𝑓𝑓 = (𝑎𝑎� + 𝑏𝑏�) ∙ 1 

𝑎𝑎 
𝑏𝑏 

𝑎𝑎 
𝑏𝑏 

𝑎𝑎 
𝑏𝑏 

𝑎𝑎 
𝑏𝑏 



Complex Logic Gates in CMOS 

• Bubble pushing (how to construct a pFET network) 
– Example 

𝑎𝑎 
𝑏𝑏 

𝑐𝑐 
𝑑𝑑 

𝑒𝑒 𝑓𝑓 

= 

𝑎𝑎 
𝑏𝑏 

𝑐𝑐 
𝑑𝑑 

𝑒𝑒 𝑓𝑓 

= 

𝑎𝑎 
𝑏𝑏 

𝑐𝑐 
𝑑𝑑 

𝑒𝑒 𝑓𝑓 

𝑎𝑎 𝑏𝑏 

𝑐𝑐 𝑑𝑑 

𝑒𝑒 

𝑓𝑓 



Complex Logic Gates in CMOS 

• XOR 
– 𝑎𝑎 ⊕ 𝑏𝑏 = 𝑎𝑎 ∙ 𝑏𝑏� + 𝑎𝑎� ∙ 𝑏𝑏 = 𝑎𝑎 ∙ 𝑏𝑏 + 𝑎𝑎� ∙ 𝑏𝑏� (#TRs: 8+4(for the two inverters)) 

• XNOR 
– 𝑎𝑎 ⊕ 𝑏𝑏 = 𝑎𝑎 ∙ 𝑏𝑏 + 𝑎𝑎� ∙ 𝑏𝑏� = 𝑎𝑎 ∙ 𝑏𝑏� + 𝑎𝑎� ∙ 𝑏𝑏 (#TRs: 8+4(for the two inverters)) 

𝑎𝑎 

𝑏𝑏 

𝑎𝑎� 

𝑏𝑏� 

𝑎𝑎 ⊕ 𝑏𝑏 

𝑎𝑎 𝑏𝑏 

𝑎𝑎� 𝑏𝑏� 

𝑎𝑎 

𝑏𝑏 

𝑎𝑎� 

𝑏𝑏� 

𝑎𝑎 ⊕ 𝑏𝑏 

𝑎𝑎 

𝑏𝑏 𝑎𝑎� 

𝑏𝑏� 



Complex Logic Gates in CMOS 

• Structured logic analysis 
– Derive a Boolean equation for a given transistor-level schematic. 

 
• Analysis methodology 1 

– Convert the nFET network into a Boolean equation (only when the pFET 
network is the dual of the nFET network.) 

– Notice that the nFET network passes logic 0. 
• Example 

– 𝑓𝑓 = 𝑎𝑎 ∙ 𝑏𝑏 + 𝑎𝑎� ∙ 𝑏𝑏� = 𝑎𝑎� + 𝑏𝑏� ∙ 𝑎𝑎 + 𝑏𝑏 = 𝑎𝑎 ∙ 𝑏𝑏� + 𝑎𝑎� ∙ 𝑏𝑏 

𝑎𝑎 

𝑏𝑏 

𝑎𝑎� 

𝑏𝑏� 

𝑎𝑎 ⊕ 𝑏𝑏 

𝑎𝑎 𝑏𝑏 

𝑎𝑎� 𝑏𝑏� 



Complex Logic Gates in CMOS 

• Analysis methodology 2 
– Identify all the paths from 𝑉𝑉𝑆𝑆𝑆𝑆 to the output (only when the pFET network 

is the dual of the nFET network.) 
– Merge them into a single Boolean equation. 
– Negate the output. 

• Example 
– Path 1: 𝑏𝑏 ∙ 𝑎𝑎 
– Path 2: c ∙ 𝑎𝑎 
– Merge: 𝑏𝑏 ∙ 𝑎𝑎 + 𝑐𝑐 ∙ 𝑎𝑎 = 𝑎𝑎 ∙ (𝑏𝑏 + 𝑐𝑐) 
– Negate: 𝑎𝑎 ∙ (𝑏𝑏 + 𝑐𝑐) 
– 𝑓𝑓 = 𝑎𝑎 ∙ (𝑏𝑏 + 𝑐𝑐) 

path 1 
path 2 

𝑎𝑎 
𝑏𝑏 

𝑐𝑐 

𝑎𝑎 

𝑏𝑏 𝑐𝑐 

𝑓𝑓 



Pass Transistors 

• nFET 
– 𝑔𝑔 = 0: OFF 
– 𝑔𝑔 = 1: ON 

• 𝑎𝑎 = 0: 𝑏𝑏 = strong 0 
• 𝑎𝑎 = 1: 𝑏𝑏 = weak 1 

 
 

• pFET 
– 𝑔𝑔 = 1: OFF 
– 𝑔𝑔 = 0: ON 

• 𝑎𝑎 = 0: 𝑏𝑏 = weak 0 
• 𝑎𝑎 = 1: 𝑏𝑏 = strong 1 

𝑔𝑔 

𝑔𝑔 

𝑎𝑎 𝑏𝑏 

𝑎𝑎 𝑏𝑏 



Transmission Gate Circuits 

• Transistor circuit 
 
 
 
 

• Behaviors 
– When 𝑠𝑠 = 0: Both nFET and pFET are OFF. 
– When 𝑠𝑠 = 1: Both nFET and pFET are ON. 

• If 𝑥𝑥 = 0, the nFET perfectly transmits it to 𝑦𝑦 (nFET is good at transferring 0.) 
• If 𝑥𝑥 = 1, the pFET perfectly transmits it to 𝑦𝑦 (pFET is good at transferring 1.) 

 
• Disadvantage 

– Needs 𝑠̅𝑠. 
– Does not restore the input signals. 

𝑥𝑥 𝑦𝑦 

𝑠𝑠 

𝑠̅𝑠 

𝑠𝑠 
𝑥𝑥 𝑦𝑦 

𝑠̅𝑠 



Transmission Gate Circuits 

• Logic design using transmission gates 
– MUX: 𝑓𝑓 = 𝑠̅𝑠 ∙ 𝑥𝑥0 + 𝑠𝑠 ∙ 𝑥𝑥1 

 
 
 
 
 
 

– XNOR 

𝑠̅𝑠 

𝑠𝑠 

𝑏𝑏 

𝑓𝑓 

𝑥𝑥0 

𝑥𝑥1 

𝑓𝑓 = 𝑎𝑎⨁𝑏𝑏 

𝑏𝑏� 

𝑎𝑎 



Pass Transistors vs. Transmission Gates 

Pass TR. Transmission Gates 

Symbols 

Signal strength Strong 0 
Weak 1 

Weak 0 
Strong 1 

Strong 0 
Strong 1 

Area 𝐴𝐴 𝑟𝑟𝑟𝑟 (𝑟𝑟 > 1) 1 + 𝑟𝑟 𝐴𝐴 
Control signal 𝑔𝑔 𝑔𝑔 𝑔𝑔, 𝑔̅𝑔 



Buffer 

• 𝑌𝑌 = 𝐴𝐴 
 
 
 
 
 
 

• Buffers are used for 
– Signal restoration 
– Interconnect optimization 

𝐴𝐴 𝑌𝑌 𝐴𝐴 𝑌𝑌 



Tristate Inverter 

• Truth table 
 
 
 
 

• Symbol & Schematic 

EN Y 
0 𝑍𝑍 
1 𝐴̅𝐴 

𝐴𝐴 𝑌𝑌 

𝐴𝐴 

𝑌𝑌 

𝐸𝐸𝐸𝐸 

𝐴𝐴 𝑌𝑌 

𝐸𝐸𝐸𝐸 

𝐸𝐸𝐸𝐸 

𝐸𝐸𝐸𝐸 

𝐸𝐸𝐸𝐸 

𝐴𝐴 



Tristate Buffer 

• Symbol 
 
 
 
 
 

• Gate-level schematic 

𝐴𝐴 𝑌𝑌 

𝐸𝐸𝐸𝐸 

𝐴𝐴 𝑌𝑌 

𝐸𝐸𝐸𝐸 

𝐸𝐸𝐸𝐸 

𝐴𝐴 𝑌𝑌 

𝐸𝐸𝐸𝐸 



Sequential Circuit – D Latch 

• Positive-level-sensitive D latch CLK Q 
0 hold 
1 𝐷𝐷 𝑪𝑪𝑪𝑪𝑪𝑪 

𝑉𝑉𝐷𝐷𝐷𝐷  

𝑡𝑡 

𝑉𝑉𝐷𝐷𝐷𝐷  

𝑡𝑡 

0 

𝑫𝑫 

𝑉𝑉𝐷𝐷𝐷𝐷  

𝑡𝑡 

𝑸𝑸 

Transparent 

Capture 

Hold 



Sequential Circuit – D Latch 

• Schematic 

𝑄𝑄� 

𝑄𝑄 

𝐷𝐷 
𝐶𝐶𝐶𝐶𝐶𝐶 

𝐶𝐶𝐶𝐶𝐶𝐶 

𝐶𝐶𝐶𝐶𝐶𝐶 

𝐶𝐶𝐶𝐶𝐶𝐶 



Sequential Circuit – D Flip-Flop 

• Positive-edge-triggered D flip-flop 

𝑉𝑉𝐷𝐷𝐷𝐷  

𝑡𝑡 

𝑉𝑉𝐷𝐷𝐷𝐷  

𝑡𝑡 

0 

𝑉𝑉𝐷𝐷𝐷𝐷  

𝑡𝑡 

Capture 

Hold 

𝑪𝑪𝑪𝑪𝑪𝑪 

𝑫𝑫 

𝑸𝑸 

CLK Q 
0, 1 hold 
↑ catch 𝐷𝐷 



Sequential Circuit – D Flip-Flop 

• Schematic 

𝐷𝐷 
𝐶𝐶𝐶𝐶𝐶𝐶 

𝐶𝐶𝐶𝐶𝐶𝐶 

𝐶𝐶𝐶𝐶𝐶𝐶 

𝐶𝐶𝐶𝐶𝐶𝐶 
𝑄𝑄� 

𝑄𝑄 
𝐶𝐶𝐶𝐶𝐶𝐶 

𝐶𝐶𝐶𝐶𝐶𝐶 

𝐶𝐶𝐶𝐶𝐶𝐶 

𝐶𝐶𝐶𝐶𝐶𝐶 



Sequential Circuit 

• Example 
– Inputs: 𝐷𝐷,𝐴𝐴𝐴𝐴𝐴𝐴,𝐶𝐶𝐶𝐶𝐶𝐶,𝐶𝐶𝐶𝐶𝐶𝐶 
– Outputs: 𝑄𝑄,𝑄𝑄� 

𝑄𝑄 

𝑄𝑄� 

𝐶𝐶𝐶𝐶𝐶𝐶 

𝐶𝐶𝐶𝐶𝐶𝐶 
𝐷𝐷 

𝐴𝐴𝐴𝐴𝐴𝐴 

𝐶𝐶𝐶𝐶𝐶𝐶 

𝐶𝐶𝐶𝐶𝐶𝐶 
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