

Logic Design with MOSFETs

Dae Hyun Kim

EECS Washington State University

References

- John P. Uyemura, "Introduction to VLSI Circuits and Systems," 2002.
 Chapter 2
- Neil H. Weste and David M. Harris, "CMOS VLSI Design: A Circuits and Systems Perspective," 2011.
 - Chapter 1

Goal

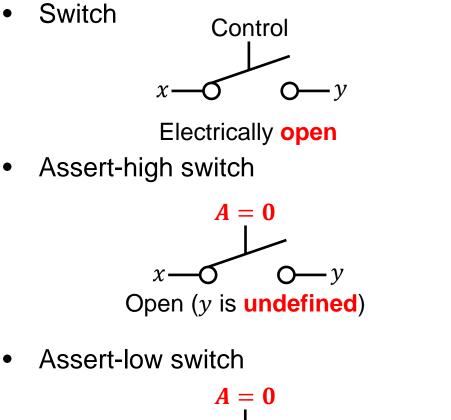
• Design logic gates using MOSFETs (NMOS and PMOS)

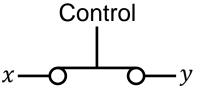
Signals and Wires

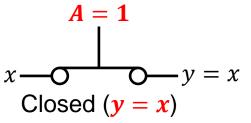

• Signals

$$- 0 = V_{SS} = \text{Ground} = \text{GND} = \text{Low} = 0\text{V}$$

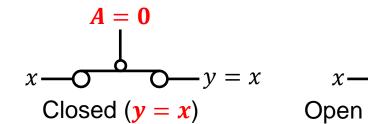
 $-1 = V_{DD} = Power = PWR = High = 5V, 3.3V, 1.5V, 1.2V, 1.0V, etc.$

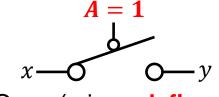

 V_{DD}


• Wires



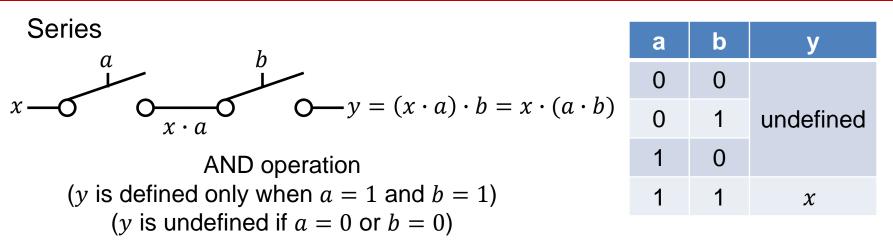
Ideal Switches

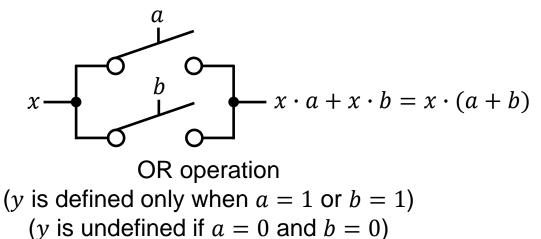




Electrically short

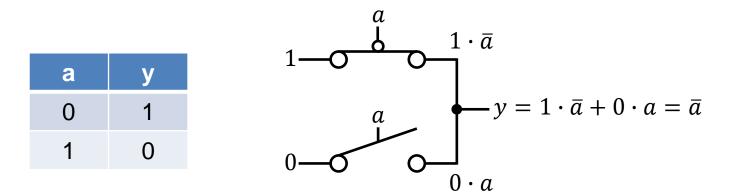
•




Open (*y* is **undefined**)

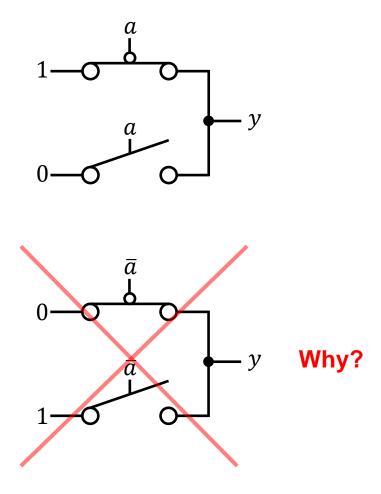
Series/Parallel Connections of Switches

• Parallel

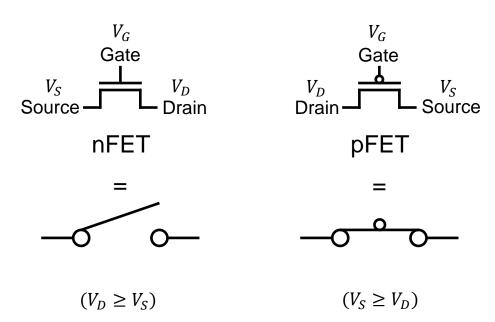


а	b	у		
0	0	undefined		
0	1			
1	0	x		
1	1			

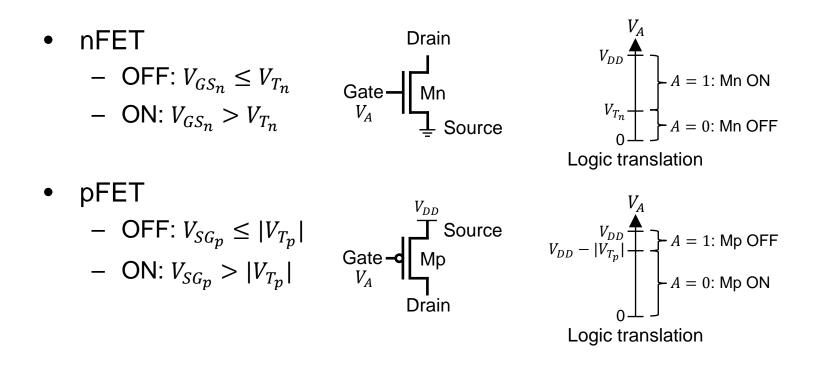
Inverter Design with Switches


- Inverter
 - The output is defined both when a = 0 and when a = 1.

Inverter Design with Switches

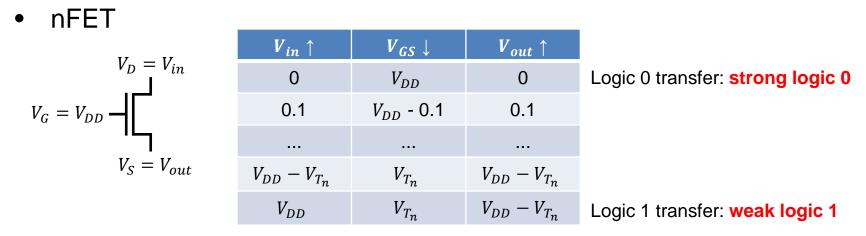

• Two inverter designs

MOSFETs as Switches


- MOSFET: Metal-Oxide-Semiconductor Field-Effect Transistor
 - n-channel MOSFET = nFET = NMOS
 - p-channel MOSFET = pFET = PMOS
 - Complementary MOS: CMOS
- Symbols

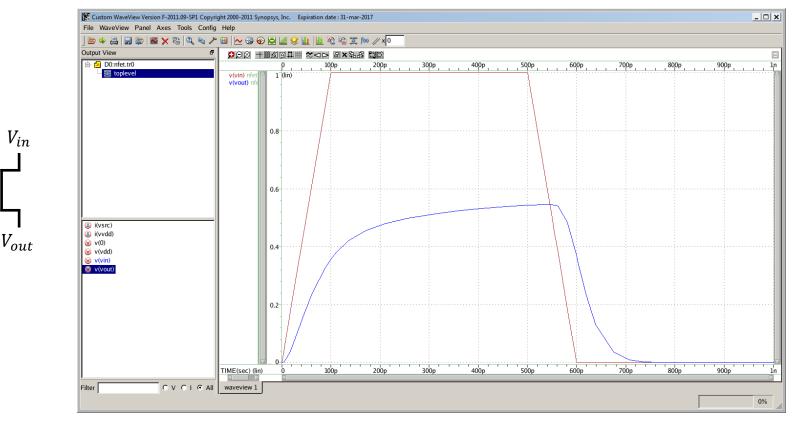
MOSFETs as Switches

- Threshold voltage
 - nFET: $V_{T_n} > 0$
 - pFET: $V_{T_p} < 0$

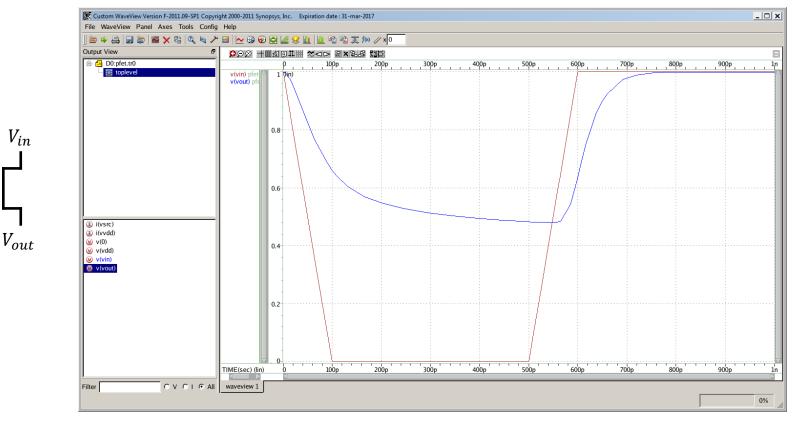


MOSFETs as Switches

- Example (PTM High-Performance 45nm High-K Metal Gate)
 - *V_{DD}*: 1.0V
 - $V_{T_n}: 0.46893V$
 - V_{Tp}: -0.49158V
- Example (PTM High-Performance 32nm High-K Metal Gate)
 - $V_{DD}: 0.9V$
 - $V_{T_n}: 0.49396V$
 - *V_{Tp}*: -0.49155V
- Example (PTM High-Performance 22nm High-K Metal Gate)
 - $V_{DD}: 0.8V$
 - $V_{T_n}: 0.50308V$
 - V_{Tp}: -0.4606V

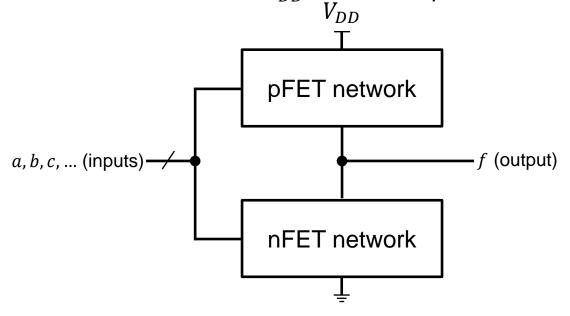


 $V_{S} = V_{in}$ $V_{G} = 0 - \mathbf{q}$ $V_{in}\downarrow$ $V_{SG}\downarrow$ $V_{out} \downarrow$ Logic 1 transfer: strong logic 1 V_{DD} V_{DD} V_{DD} $V_{DD} - \varepsilon$ $V_{DD} - \varepsilon$ $V_{DD} - \varepsilon$ $V_D = V_{out}$ $|V_{T_p}|$ $|V_{T_p}|$ $|V_{T_p}|$ Logic 0 transfer: weak logic 0 0 0 $|V_{T_p}|$

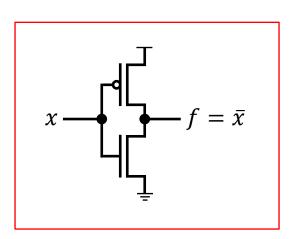

- SPICE simulation (45nm technology)
 - nFET

 V_{DD} .

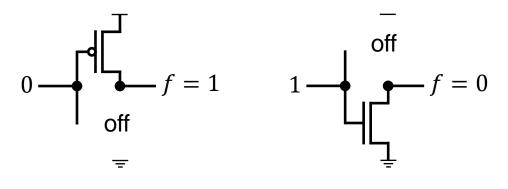
- SPICE simulation (45nm technology)
 - pFET



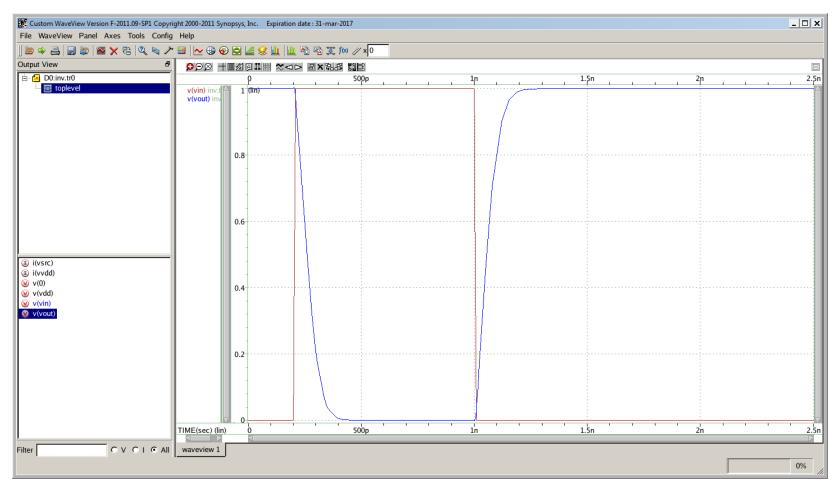
- nFET
 - Strong logic 0 transfer
 - Weak logic 1 transfer
- pFET
 - Strong logic 1 transfer
 - Weak logic 0 transfer
- CMOS
 - Use pFETs to pass logic 1.
 - Use nFETs to pass logic 0.

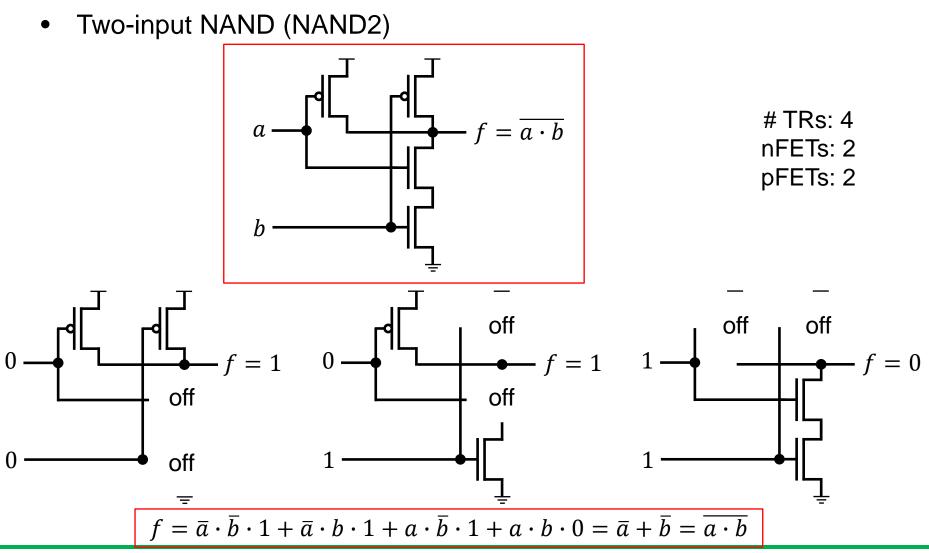


- Principles
 - Construct the nFET network using only nFETs and the pFET network using only pFETs.
 - If the output is 1, the pFET network connects V_{DD} to the output and the nFET network disconnects V_{SS} and the output.
 - If the output is 0, the nFET network connects V_{SS} to the output and the pFET network disconnects V_{DD} and the output.



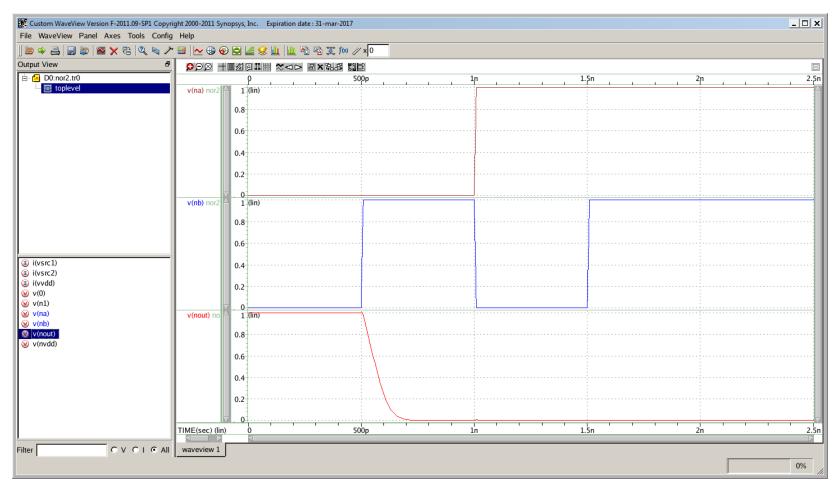
• Inverter




 $f = \bar{x} \cdot 1 + x \cdot 0 = \bar{x}$

• SPICE simulation

• SPICE simulation

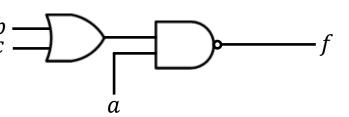

Custom WaveView Version F-2011.09-SP1 Copyrig		sys, Inc. Expiration da	ate : 31-mar-2017				_ 🗆 🗙
File WaveView Panel Axes Tools Config							
🔄 🌳 📇 🔜 😂 🚟 🗙 🕄 🔍 🔌 🥕	🔠 🗠 😌 🌚 😫	2 🖉 😢 🏨 🖣	🛍 🗟 🦉 f(x) 🥢 x 🛛				
Output View 🗗		⊴p∎ ≈⊲⊳	SX94 BC				
È- 🚰 D0:nand2.tr0 └── 💽 toplevel		ρ 1 (lin)).8	500p	1n		<u>2</u> n	2.5r
		0.6					
).4					
(2) i(vsrc1) (2) i(vsrc2) (2) i(vvdd) (2) v(0) (2) v(n1)		 1_(lin)).8					
).6					
).2					
		0 1 ((in)).8					
).6					
).2 .2					
ilter CVCI © All	TIME(sec) (lin) waveview 1	0	500p	1n	1.5n	2n	2.5
							0%

• SPICE simulation

• Example

$$f = \overline{a \cdot (b+c)}$$

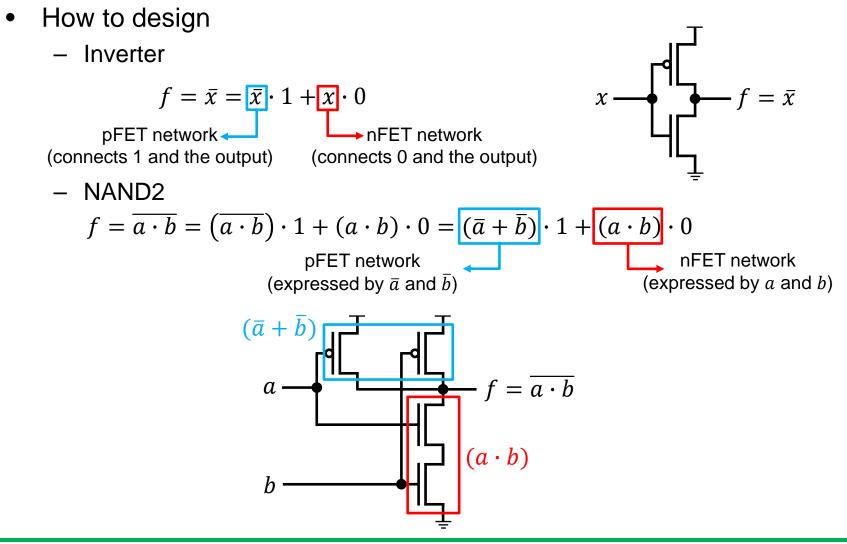
• Using logic gates


TRs: 14 nFETs: 7 pFETs: 7

TRs: 10

nFETs: 5

pFETs: 5

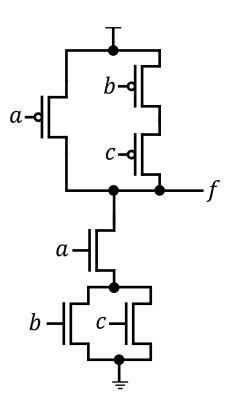

• Using logic gates

• Using TRs

- # TRs: 6 nFETs: 3
- pFETs: 3

- How to design f
 - Express $f = A \cdot 1 + B \cdot 0 = F(\overline{x_1}, ..., \overline{x_n}) \cdot 1 + \overline{F(x_1, ..., x_n)} \cdot 0$
 - Design a pFET network using $A = F(\overline{x_1}, ..., \overline{x_n})$.
 - pFETs are ON when the inputs are 0.
 - Design an nFET network using $B = \overline{F(x_1, ..., x_n)}$.
 - nFETs are ON when the inputs are 1.
- Example

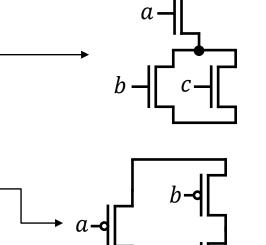
$$f = \overline{a \cdot (b + c)}$$


$$- f = \overline{a \cdot (b + c)} \cdot 1 + a \cdot (b + c) \cdot 0 = \underbrace{(\overline{a} + \overline{b} \cdot \overline{c})}_{\text{pFET network}} \cdot 1 + \underbrace{a \cdot (b + c)}_{\text{nFET network}} \cdot 0$$

$$a - \underbrace{\left(\begin{array}{c} b - 4 \\ c - 4 \end{array}\right)}_{\text{pFET network}} \cdot 1 + \underbrace{a \cdot (b + c)}_{\text{nFET network}} \cdot 0$$

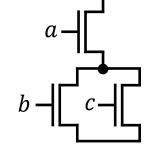
• Example

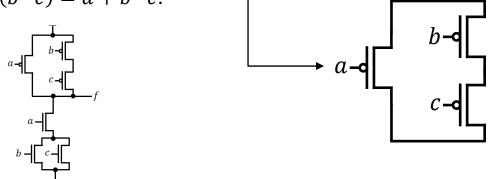
$$f = \overline{a \cdot (b+c)}$$


TRs: 6 nFETs: 3 pFETs: 3

- Structured logic design
 - Design a given Boolean equation using nFETs and pFETs.
- Assume that only non-inverted input signals are given.
 - *a*, *b*, *c*, ... are given.
 - $-\bar{a}, \bar{b}, \bar{c}, ...$ are not given. If you need them, you should generate them.

- Design methodology 1
 - When $f = \overline{S(x_1, ..., x_n)}$ (S is a function of non-inverted variables)
 - $f = \overline{S} = \overline{S} \cdot 1 + S \cdot 0$
 - Design an nFET network for S using $x_1, ..., x_n$.
 - Design a pFET network for \overline{S} using $\overline{x_1}, \dots, \overline{x_n}$.
 - Connect them to V_{DD} , V_{SS} , f.
 - Example: $f = \overline{a \cdot (b + c)}$
 - $f = \overline{a \cdot (b+c)} \cdot 1 + a \cdot (b+c) \cdot 0$
 - Design an nFET network for $a \cdot (b + c)$.
 - Design a pFET network for $\overline{a \cdot (b+c)} = \overline{a} + \overline{b} \cdot \overline{c}$. -
 - Connect them.





- Design methodology 2
 - When $f = \overline{S(x_1, \dots, x_n)}$
 - $f = \overline{S} = \overline{S} \cdot 1 + S \cdot 0$
 - Design an nFET network for *S*.
 - Design a pFET network with a dual logic of the nFET network.
 - Dual of $f(x_1, ..., x_n, 0, 1, AND, OR) = f(x_1, ..., x_n, 1, 0, OR, AND)$
 - Connect them.

- Example:
$$f = \overline{a \cdot (b+c)}$$

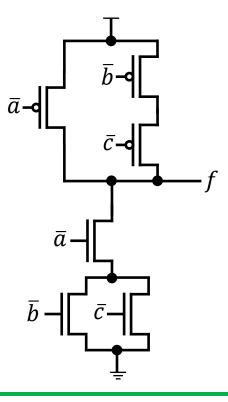
- $f = \overline{a \cdot (b+c)} \cdot 1 + a \cdot (b+c) \cdot 0$
- Design an nFET network for $a \cdot (b + c)$. -
- Dual of $a \cdot (b + c) = a + (b \cdot c) = a + b \cdot c$. —
- Connect them.

- Dual logic
 - $f(x_1, ..., x_n, 0, 1, AND, OR)^D = f(x_1, ..., x_n, 1, 0, OR, AND)$
 - Example
 - $(A \cdot B)^D = A + B$
 - $(A+B)^D = A \cdot B$
 - $(1 \cdot A)^D = 0 + A = A$
 - $(1+A)^D = 0 \cdot A = 0$
 - $(0 \cdot A)^D = 1 + A = 1$
 - $(0+A)^D = 1 \cdot A = A$
- Principles of the dual logic
 - The nFET and the pFET networks work complementarily.
 - If the nFET network is ON (i.e., connects V_{SS} to the output), the pFET network is OFF (i.e., disconnect the output from V_{DD}) and vice versa.
 - If two networks are dual, they work complementarily.
 - Prove!

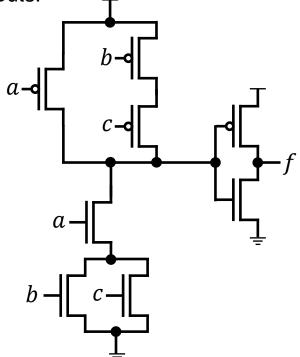
• Principles of the dual logic

$$- f = \overline{S(x_1, \dots, x_n)} = f = \overline{S(x_1, \dots, x_n)} \cdot 1 + S(x_1, \dots, x_n) \cdot 0$$

- $-\overline{S(x_1, \dots, x_n)} = \overline{S(x_1, \dots, x_n, 0, 1, AND, OR)} = S(\overline{x_1}, \dots, \overline{x_n}, 1, 0, OR, AND) = S(\overline{x_1}, \dots, \overline{x_n})^D$ (De Morgan's law)
- A pFET is ON when its control variable (x_i) is 0.
- Thus, the pFET network is the dual of the nFET network.



- Design methodology 3
 - When $f = S(x_1, ..., x_n)$ (S is a function of non-inverted variables)
 - $f = S = \overline{\bar{S}}$
 - Design \overline{S} and add an inverter at the output.
 - Example: $f = a \cdot (b + c)$
 - $f = a \cdot (b + c) = \overline{\overline{a \cdot (b + c)}}$
 - Design $\overline{a \cdot (b+c)}$.
 - Add an inverter at the output.

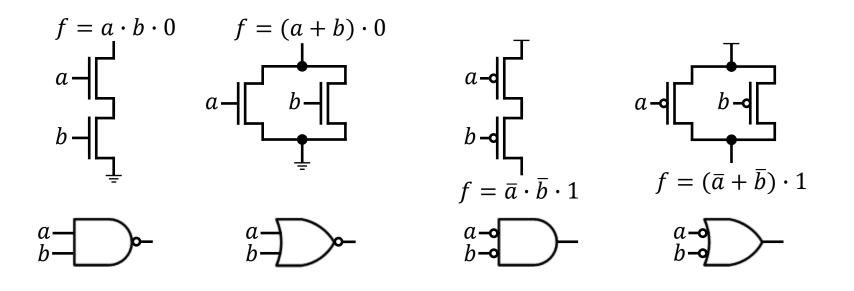

- Design methodology 4
 - When $f = \overline{S(\overline{x_1}, ..., \overline{x_n})}$ (*S* is a function of inverted variables)
 - Generate inverted inputs $(\overline{x_1}, ..., \overline{x_n})$ from the given inputs $(x_1, ..., x_n)$.
 - Design *S* using the inverted inputs.
 - Example: $f = \overline{\overline{a} \cdot (\overline{b} + \overline{c})}$
 - Inverters are not shown for brevity.

- Design methodology 5
 - When $f = \overline{S(\overline{x_1}, \dots, \overline{x_n})}$
 - $f = \overline{S(\overline{x_1}, \dots, \overline{x_n})} = S(x_1, \dots, x_n)^D = \overline{\overline{S(x_1, \dots, x_n)^D}}$
 - Design $\overline{S(x_1, \dots, x_n)^D}$ using the given inputs.
 - Add an inverter at the output.
 - Example: $f = \overline{\overline{a} + (\overline{b} \cdot \overline{c})}$

•
$$f = a \cdot (b + c) = \overline{a \cdot (b + c)}$$

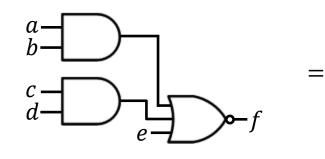
- Design methodology 6
 - When $f = S(\overline{x_1}, ..., \overline{x_n})$
 - $f = S = \overline{\bar{S}}$
 - Generate inverted inputs $(\overline{x_1}, ..., \overline{x_n})$ from the given inputs $(x_1, ..., x_n)$.
 - Design \overline{S} using the inverted inputs and add an inverter at the output.
- Design methodology 7
 - When $f = S(\overline{x_1}, ..., \overline{x_n})$
 - $f = \overline{\overline{S(\overline{x_1}, \dots, \overline{x_n})}} = \overline{S(x_1, \dots, x_n)^D}$
 - Design S^D using the given non-inverted inputs $(x_1, ..., x_n)$.
- Design methodology 8
 - When $f = S(x_1, \overline{x_1}, ..., \overline{x_n})$ or $\overline{S(x_1, \overline{x_1}, ..., \overline{x_n})}$
 - Convert the given function into an appropriate form to simplify the logic.
 - Design it.

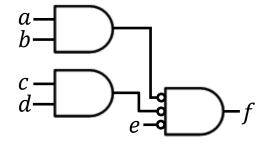
• Examples (assuming only non-inverted inputs are available)

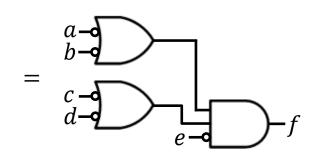

 $- f = a \cdot b$ (AND2)

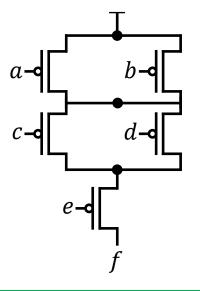
- Design $f = \overline{a \cdot b}$ and add an inverter at the output. (# TRs: 6)
- Design $f = \overline{\overline{a \cdot b}} = \overline{\overline{a + \overline{b}}}$ with two inverters to generate \overline{a} and \overline{b} . (# TRs: 8)
- $f = \overline{\overline{a} \cdot b + \overline{c} \cdot d}$
 - Add two inverters to generate \bar{a} and \bar{c} , then design f. (# TRs: 12)

$$- f = \bar{s} \cdot a + s \cdot b$$
 (2:1 MUX)

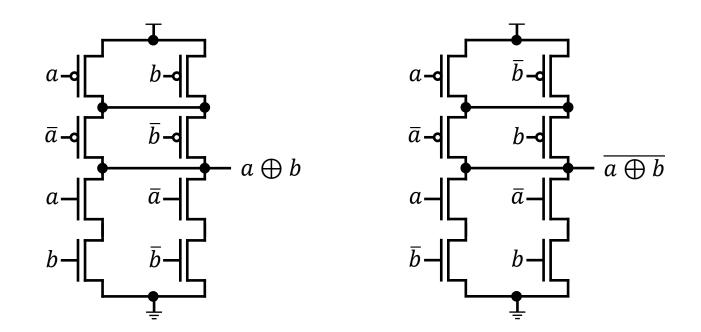



• Bubble pushing (how to construct a pFET network) - $f = A \cdot 1 + B \cdot 0 = F(\overline{x_1}, ..., \overline{x_n}) \cdot 1 + F(x_1, ..., x_n)^D \cdot 0$



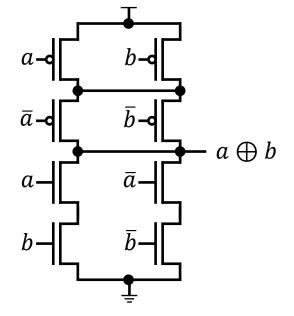


- Bubble pushing (how to construct a pFET network)
 - Example

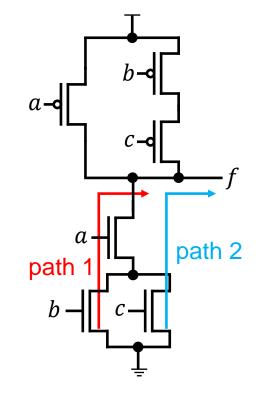


• XOR

 $- a \oplus b = a \cdot \overline{b} + \overline{a} \cdot b = \overline{a \cdot b + \overline{a} \cdot \overline{b}}$ (#TRs: 8+4(for the two inverters))


- XNOR
 - $\overline{a \oplus b} = a \cdot b + \overline{a} \cdot \overline{b} = \overline{a \cdot \overline{b} + \overline{a} \cdot b}$ (#TRs: 8+4(for the two inverters))

- Structured logic analysis
 - Derive a Boolean equation for a given transistor-level schematic.
- Analysis methodology 1
 - Convert the nFET network into a Boolean equation (only when the pFET network is the dual of the nFET network.)
 - Notice that the nFET network passes logic 0.
- Example


$$- f = \overline{a \cdot b + \overline{a} \cdot \overline{b}} = (\overline{a} + \overline{b}) \cdot (a + b) = a \cdot \overline{b} + \overline{a} \cdot b$$

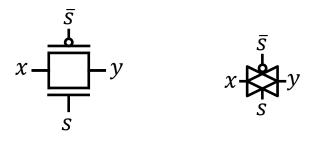
- Analysis methodology 2
 - Identify all the paths from V_{SS} to the output (only when the pFET network is the dual of the nFET network.)
 - Merge them into a single Boolean equation.
 - Negate the output.
- Example
 - Path 1: $b \cdot a$
 - Path 2: $c \cdot a$
 - Merge: $b \cdot a + c \cdot a = a \cdot (b + c)$
 - Negate: $\overline{a \cdot (b+c)}$

$$- f = \overline{a \cdot (b+c)}$$

Pass Transistors

- nFET
 - g = 0: OFF
 - -g = 1: ON
 - a = 0: b = strong 0• a = 1: b = weak 1

- pFET
 - g = 1: OFF
 - g = 0: ON

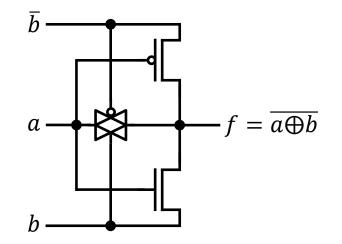

•
$$a = 0$$
: $b = \text{weak } 0$
• $a = 1$: $b = \text{strong } 1$ $a \checkmark b$

g

Transmission Gate Circuits

• Transistor circuit

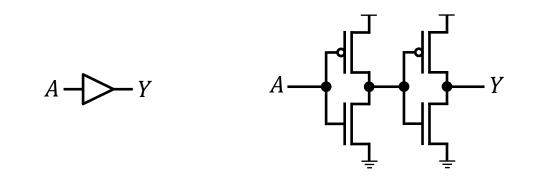
- Behaviors
 - When s = 0: Both nFET and pFET are OFF.
 - When s = 1: Both nFET and pFET are ON.
 - If x = 0, the nFET perfectly transmits it to y (nFET is good at transferring 0.)
 - If x = 1, the pFET perfectly transmits it to y (pFET is good at transferring 1.)
- Disadvantage
 - Needs \bar{s} .
 - Does not restore the input signals.


Transmission Gate Circuits

• Logic design using transmission gates

- MUX:
$$f = \overline{s} \cdot x_0 + s \cdot x_1$$

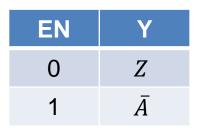
$$x_0 \xrightarrow{S}{\overline{s}} f$$


Pass Transistors vs. Transmission Gates

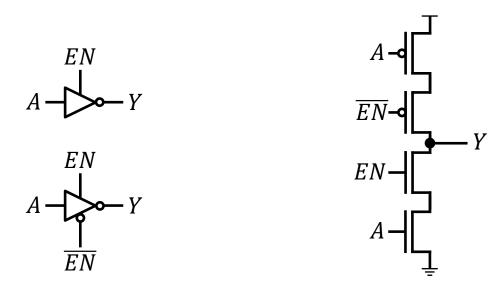
	Pass TR.		Transmission Gates
Symbols	<u>ب</u> لار	<u> </u>	₿
Signal strength	Strong 0 Weak 1	Weak 0 Strong 1	Strong 0 Strong 1
Area	A	rA(r > 1)	(1 + r)A
Control signal	g	g	g , $ar{g}$

Buffer

• Y = A

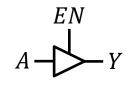


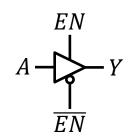
- Buffers are used for
 - Signal restoration
 - Interconnect optimization

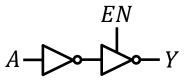


Tristate Inverter

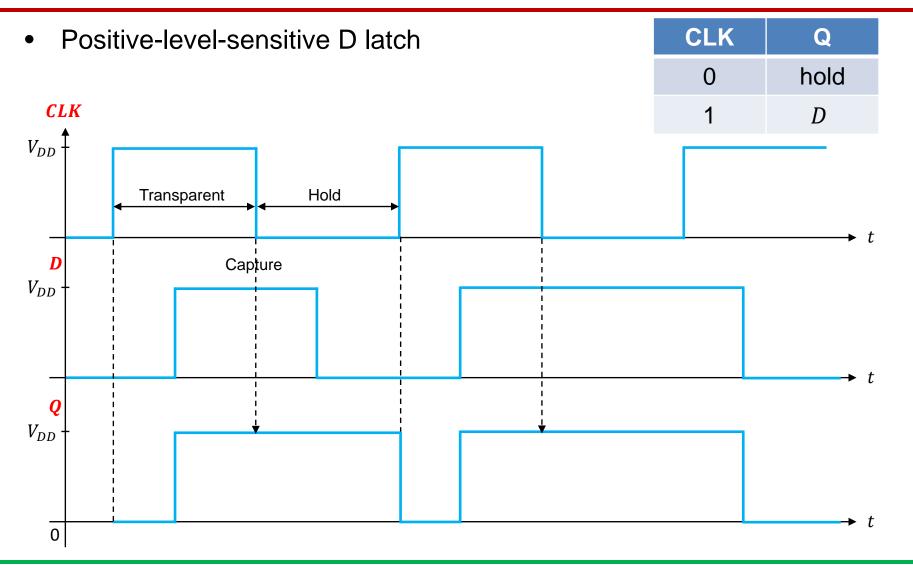
• Truth table


• Symbol & Schematic

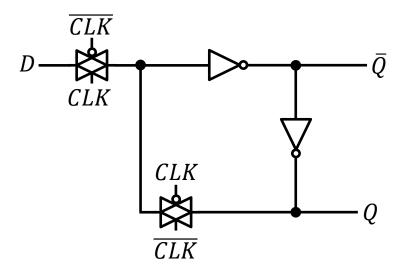


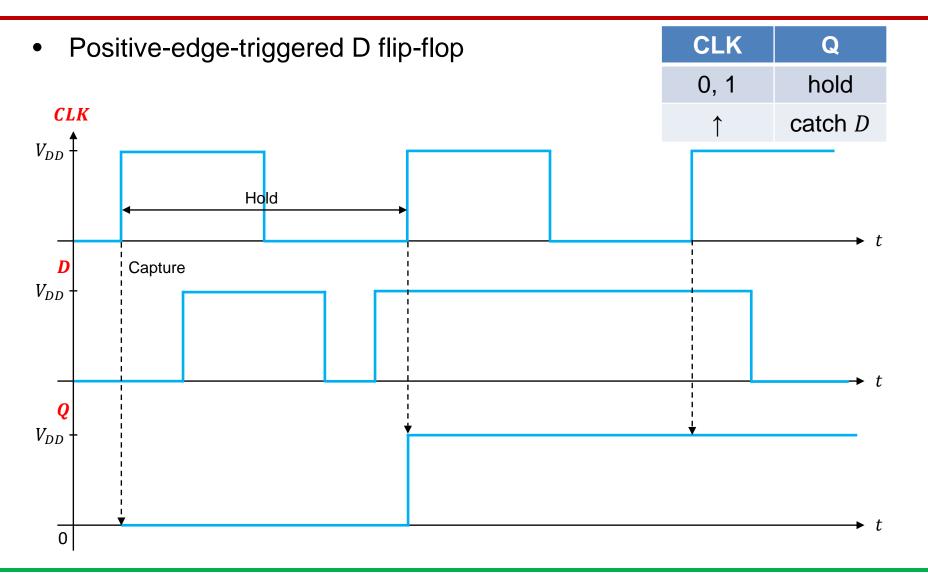

Tristate Buffer

• Symbol

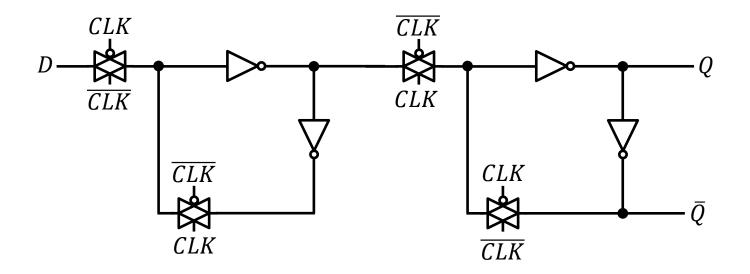


• Gate-level schematic

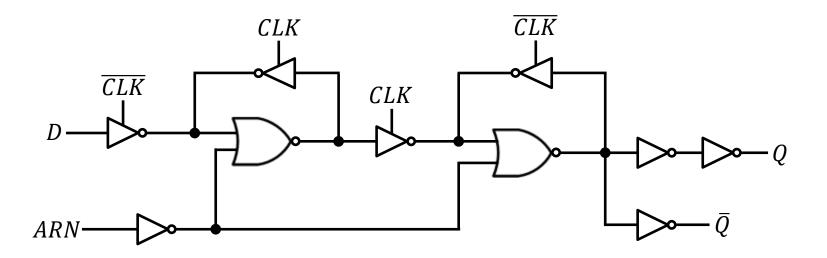

Sequential Circuit – D Latch


Sequential Circuit – D Latch

• Schematic


Sequential Circuit – D Flip-Flop

Sequential Circuit – D Flip-Flop


• Schematic

Sequential Circuit

- Example
 - Inputs: *D*, *ARN*, *CLK*, *CLK*
 - Outputs: Q, \overline{Q}

