EE434 ASIC and Digital Systems

Final Exam

May 5, 2015. (1pm – 3pm)

Instructor: Dae Hyun Kim (daehyun@eecs.wsu.edu)

Name:

WSU ID:

Problem	Points	
1	10	
2	10	
3	10	
4	10	
5	10	
6	10	
7	10	
8	10	
Total	80	

^{*} Allowed: Textbooks, cheat sheets, class notes, notebooks, calculators, watches

^{*} Not allowed: Electronic devices (smart phones, tablet PCs, laptops, etc.) except calculators and watches

Problem #1 (CMOS gates, 10 points).

What does the following circuit do? Describe the function of the circuit in as much detail as possible (D: input, Q: output, CK: clock).

Problem #2 (Transistor Sizing Under Timing Constraints, 10 points).

Let's design a *k*-input NOR gate using the dynamic CMOS design methodology. The following shows a schematic of the *k*-input NOR gate.

Our objective is to $\underline{minimize}$ the total width, $Width = a \cdot k + b$ and satisfy given timing constraints at the same time. Two timing constraints are given to us as follows:

- Setup time: Elmore delay $\leq 4 \cdot R_n \cdot C_L$
- Hold time: Elmore delay $\geq \frac{1}{4} \cdot R_n \cdot C_L$

 R_n is the resistance of a 1X NMOS transistor. $\mu_n = 2 \cdot \mu_p$. Ignore all the parasitic capacitances. All the transistors for $x_1 \sim x_k$ are upsized to aX and the transistor for CK is upsized to bX (a and b are <u>real</u> numbers). <u>Find</u> a and b minimizing the total width and satisfying the timing constraints.

Problem #3 (Buffer Insertion, 10 points).

A source drives two sinks through a net and you are supposed to insert a buffer between the source and the branch point (MP) as shown in the above figure. <u>Find</u> an optimal location of the buffer minimizing the total delay, i.e., <u>represent</u> "s" as a function of the following parameters:

- Output resistance of BUF_X1: R₁
- Input capacitance of BUF_X1: C₁
- Unit wire resistance: $r(\Omega/\mu m)$
- Unit wire capacitance: $c(F/\mu m)$

Problem #4 (Timing Analysis for Dynamic CMOS Circuits, 10 points).

The following figure shows a dynamic CMOS circuit between two pipeline stages.

Setup time: T_s

Clock period: T_{CLK}

D-F/F internal delay: T_{CO}

• Clock skew: 0

NMOS logic delay: T_{logic}

• Inverter delay: T_v

When the clock goes from low to high, the F/Fs capture their input signals. At the same time, the dynamic CMOS circuit starts pre-charging the output node. When the clock goes from high to low, the dynamic CMOS circuit starts evaluating its inputs. The delay of the dynamic CMOS circuit ($T_{\rm logic}$) is actually the time spent to discharge the output node. <u>Derive</u> a new setup time constraint (inequality) for the dynamic CMOS circuit shown above.

Problem #5 (Timing Analysis and Coupling in an RCA, 10 points).

Let's design a four-bit ripple carry adder (RCA) with C_0 tied to ground as shown below.

Due to some physical design constraints, only ten routing tracks are available for the eight primary input signals as follows:

You are supposed to use <u>eight</u> routing tracks <u>for signal</u> and the other <u>two</u> routing tracks <u>for shielding</u> tied to V_{DD} or V_{SS} . Wire resistance is negligible and each wire has a ground capacitor (C_g) and a coupling capacitor as follows:

- Output resistance of the buffers driving the wires: 500Ω
- $C_q: 50fF$
- C_c : 25fF
- Delay of a full adder (from its inputs to both its Sum and Carry-Out): 40ps
- Wire delay: $2 \cdot R \cdot C$ (where R is the output resistance of the buffer driving the net and C is the total capacitance of the wire).

<u>Assign</u> the eight primary input signals and the two shielding to the ten routing tracks and <u>compute</u> the delay from the primary inputs to S_3 or C_4 . You should <u>minimize</u> the delay from the primary inputs to S_3 or C_4 when you assign the signals to the routing tracks. (See the next page for an example).

Example) Suppose the following is my assignment result.

$$B_3$$
 A_3 Sh B_2 A_2 Sh B_1 A_1 B_0 A_0

The following shows the total capacitance of each wire:

•
$$B_3: C_g + 3C_c$$
 $A_3: C_g + 3C_c$ $B_2: C_g + 3C_c$ $A_2: C_g + 3C_c$
• $B_1: C_g + 3C_c$ $A_1: C_g + 4C_c$ $B_0: C_g + 4C_c$ $A_0: C_g + 3C_c$

The following shows the arrival time at each node:

•
$$B_3, A_3, B_2, A_2, B_1, A_0$$
: $2RC = 2R(C_g + 3C_c) = 2 \cdot (500\Omega) \cdot (50fF + 3 \cdot 25fF) = 125ps$

•
$$A_1, B_0: 2RC = 2R(C_g + 4C_c) = 2 \cdot (500\Omega) \cdot (50fF + 4 \cdot 25fF) = 150ps$$

Thus, the delay is 310ps.

Problem #6 (Timing Analysis under PVT Variation, 10 points).

- Delay from the clock source to D-F/F 1 (and D-F/F 2): cd_1 (and cd_2)
- Setup time of the F/Fs: T_s
- Hold time of the F/Fs: T_h
- D-F/F internal delay: T_{CQ}
- Clock skew: $T_{\text{skew}} = cd_2 cd_1$
- Logic delay: T_{logic}
- Clock period: T_{CLK}

Ideally, the following inequalities should be satisfied:

- 1. Setup time: $T_{\rm s} \leq T_{\rm CLK} + T_{\rm skew} T_{\rm logic} T_{\rm CQ}$
- 2. Hold time: $T_h \le T_{CQ} + T_{logic} T_{skew}$

Process-voltage-temperature (PVT) variation causes serious problems such as delay variation. For example, a transistor can be faster or slower than predicted due to process variation (i.e., μ_p and μ_n change) and wire delay can be increased or decreased depending on the operating temperature. The following shows variations in the timing values due to PVT variation:

- $cd_1 \rightarrow cd_1 \pm \Delta_1$
- $cd_2 \rightarrow cd_2 \pm \Delta_2$
- $T_{\rm CQ} \rightarrow T_{\rm CQ} \pm \Delta_3$
- $T_{\text{logic}} \rightarrow T_{\text{logic}} \pm \Delta_4$

Derive a new setup time and a new hold time constraints (inequalities) that should be satisfied under the PVT variations. The new inequalities should consist of the following constants and variables only:

•
$$T_{\rm s}$$
, $T_{\rm h}$, $T_{\rm CQ}$, $T_{\rm CLK}$, $T_{\rm skew}$, $T_{\rm logic}$, Δ_1 , Δ_2 , Δ_3 , Δ_4

Answer)

Setup time:

Hold time:

Problem #7 (High-Speed Adder, 10 points).

Compute the sum of A and B and Cin using the conditional sum adder.

- A = 65534 (111111111111110)
- B = 13421 (0011010001101101)
- Cin = 1

Result

 $CI_0 = 1$ *i*: | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 7 8 5 1 0 6 4 3 2 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 A_i : B_i : 1 1 0 1 0 0 0 1 1 0 1 1 0 1 S_i^0 : CO_i^0 : Step 1 S_i^1 : CO_i^1 : S_i^0 : CO_i^0 : Step 2 S_i^1 : ${CO_i}^1$: S_i^0 : CO_i^0 : Step 3 S_i^1 : ${CO_i}^1$: S_i^0 : CO_i^0 : Step 4 S_i^1 : CO_i^{1} :

Problem #8 (Testing, 10 points).

We want to detect stuck-at-0 and stuck-at-1 faults at all the primary inputs, x_1, x_2, x_3, x_4 , and the two internal nodes, a, b. Computation of Z_f to detect a stuck-at-0/1 fault at an internal node can be done by setting the value of the node to constant 0 (for stuck-at-0 faults) or 1 (for stuck-at-1 faults). Find a <u>minimal</u> set of test vectors that can detect all the s-a-0 and s-a-1 faults at x_1, x_2, x_3, x_4, a , and b.

