EE434 ASIC and Digital Systems

Midterm Exam 1

February 25, 2015. (5:10pm - 6pm)

Instructor: Dae Hyun Kim (daehyun@eecs.wsu.edu)

Name:

WSU ID:

Problem	Points	
1	10	
2	10	
3	10	
4	10	
5	10	
6	10	
7	10	
8	10	
Total	80	

^{*} Allowed: Textbooks, cheat sheets, class notes, notebooks, calculators, watches

^{*} Not allowed: Electronic devices (smart phones, tablet PCs, laptops, etc.) except calculators and watches

Problem #1 (Static CMOS gates, 10 points).

Represent F as a function of a, b, c, and d.

Problem #2 (Static CMOS gates, 10 points).

What does the following circuit do? Describe the function of the circuit in as much detail as possible.

Problem #3 (CMOS Logic, 10 points).

What is the functionality of the following circuit? Describe the functionality in as much detail as possible.

Problem #4 (Transistor Sizing, 10 points).

Size the transistors in the following gate. R_n is the resistance of a 1X NMOS transistor. $\mu_n=2\cdot\mu_p$. Ignore all the parasitic capacitances. Target time constant: $\tau_{target}=R_n\cdot\mathcal{C}_L$. Try to minimize the total area.

Problem #5 (Transistor Sizing, 10 points).

We want to design a *k*-input NOR gate. However, the static CMOS gate design methodology is not suitable for the design of the *k*-input NOR gate due to area overhead in the pull-up network and the body-bias effect. Therefore, we are going to design it using the dynamic CMOS design methodology. The following shows a schematic of the *k*-input NOR gate.

 R_n is the resistance of a 1X NMOS transistor. $\mu_n=2\cdot\mu_p$. Ignore all the parasitic capacitances. Target time constant: $\tau_{target}=R_n\cdot C_L$. All the transistors for $x_1\sim x_k$ are upsized to aX and the transistor for CK is upsized to bX (a and b are *real* numbers). We *minimize* the total width, $Width=a\cdot k+b$. Find a and b (i.e., derive a (and b) as a function of k) minimizing the total width.

Problem #6 (Elmore Delay, 10 points).

6-1. Compute Elmore delay at LOAD1 and LOAD2, i.e., represent the delay at LOAD1 (and LOAD2) as a function of $R_1 \sim R_4$, C_1 , C_2 , C_{LOAD1} , and C_{LOAD2} .

6-2. Compute Elmore delay at LOAD1 for $R_1=R_2=R_3=1k\Omega$, $C_1=C_2=C_{LOAD1}=10fF$, $R_4=\mathbf{0}$. $\mathbf{1}k\Omega$, and $C_{LOAD2}=1pF$. Then, compute Elmore delay at LOAD1 for $R_1=R_2=R_3=1k\Omega$, $C_1=C_2=C_{LOAD1}=10fF$, $R_4=\mathbf{10}M\Omega$, and $C_{LOAD2}=1pF$. This result is called "resistive shielding". Discuss a limitation of the Elmore delay model in terms of the resistive shielding effect.

Problem #7 (Dynamic CMOS, 10 points).

Compare the following implementations for a dynamic-CMOS k-input NOR gate. Are there any problems in (a)? in (b)?

Problem #8 (DC Characteristics, 10 points).

The following circuit is called "pseudo-PMOS". Sketch a DC characteristic curve of the pseudo-PMOS inverter and properly split the curve into regions. In each region, show the status (cut-off, linear, saturation) of each transistor (m_n and m_p).

