EE434 ASIC and Digital Systems

Midterm Exam 2

April 8, 2015. (5:10pm - 6pm)

Instructor: Dae Hyun Kim (daehyun@eecs.wsu.edu)

Name:

WSU ID:

Problem	Points	
1	20	
2-1	13	
2-2	7	
3-1	10	
3-2	10	
4	20	
Total	80	

^{*} Allowed: Textbooks, cheat sheets, class notes, notebooks, calculators, watches

^{*} Not allowed: Electronic devices (smart phones, tablet PCs, laptops, etc.) except calculators and watches

Problem #1 (Layout, 20 points).

Represent Out as a Boolean function of EN and A or describe the function of the following layout in as much detail as possible (Primary inputs: A, EN. Primary output: Out).

Problem #2 (Coupling Analysis, 20 points).

Three nets are coupled through C_{c1} and C_{c2} as shown in the following figure:

Net 3 is the only aggressor and Net 2 and Net 1 are victims. Although Net 1 is not directly connected to Net 3, Net 1 is affected by the potential change of Net 2 when Net 3 switches. The above figure can be simplified as follows:

1 – 12 points) Derive ΔV_2 and ΔV_1 as a function of ΔV_3 , C_{g1} , C_{g2} , C_{c1} , and C_{c2} .

$$i_{32} = C_{c2} \frac{d(V_3 - V_2)}{dt} = C_{g2} \frac{dV_2}{dt} + C_{c1} \frac{d(V_2 - V_1)}{dt}$$
$$i_{21} = C_{c1} \frac{d(V_2 - V_1)}{dt} = C_{g1} \frac{dV_1}{dt}$$

From
$$i_{21}$$
: $C_{c1}(\Delta V_2 - \Delta V_1) = C_{g1}\Delta V_1 \rightarrow \Delta V_1 = \frac{C_{c1}}{C_{g1} + C_{c1}}\Delta V_2$

From
$$i_{32}$$
: $C_{c2}(\Delta V_3 - \Delta V_2) = C_{a2}\Delta V_2 + C_{c1}(\Delta V_2 - \Delta V_1)$

$$\rightarrow \quad C_{c2} \Delta V_3 \ = \left(C_{g2} + C_{c1} + C_{c2} \right) \Delta V_2 - C_{c1} \Delta V_1 = \left(C_{g2} + C_{c1} + C_{c2} - \frac{{C_{c1}}^2}{C_{g1} + C_{c1}} \right) \Delta V_2$$

$$\begin{array}{l} \rightarrow \quad C_{c2} \Delta V_{3} \ = \left(\frac{C_{g1} C_{g2} + C_{g2} C_{c1} + C_{g1} C_{c2} + C_{c1} C_{c2}}{C_{g1} + C_{c1}} \right) \Delta V_{2} \\ \\ \vdots \ \Delta V_{2} \ = C_{c2} \left(\frac{C_{g1} + C_{c1}}{C_{g1} C_{g2} + C_{g2} C_{c1} + C_{g1} C_{c1} + C_{g1} C_{c2} + C_{c1} C_{c2}} \right) \Delta V_{3} \\ \\ \Delta V_{1} \ = \left(\frac{C_{c1} C_{c2}}{C_{g1} C_{g2} + C_{g2} C_{c1} + C_{g1} C_{c1} + C_{g1} C_{c2} + C_{c1} C_{c2}} \right) \Delta V_{3} \\ \end{array}$$

2 – 8 points) True/False questions (Hint: Use your intuition or the formulas you derived in the above problem).

a) If C_{g1} increases, ΔV_1 increases (true/false).

$$\Delta V_1 = \left(\frac{C_{c1}C_{c2}}{\left(C_{g2} + C_{c1} + C_{c2}\right)C_{g1} + C_{g2}C_{c1} + C_{c1}C_{c2}}\right)\Delta V_3 \quad \rightarrow \quad \Delta V_1 \ decreases.$$

b) If C_{a1} increases, ΔV_2 increases (true/false).

$$\Delta V_2 = \frac{C_{c2}}{\left(C_{g2} + C_{c1} + C_{c2} - \frac{{C_{c1}}^2}{C_{g1} + C_{c1}}\right)} \Delta V_3 \rightarrow \Delta V_2 \text{ decreases.}$$

c) If C_{g2} increases, ΔV_1 increases (true/false).

$$\Delta V_{1} = \left(\frac{C_{c1}C_{c2}}{\left(C_{g1} + C_{c1}\right)C_{g2} + C_{g1}C_{c1} + C_{g1}C_{c2} + C_{c1}C_{c2}}\right) \Delta V_{3} \rightarrow \Delta V_{1} \ decreases.$$

d) If C_{a2} increases, ΔV_2 increases (true/false).

$$\Delta V_2 = C_{c2} \left(\frac{C_{g1} + C_{c1}}{(C_{g1} + C_{c1})C_{g2} + C_{g1}C_{c1} + C_{g1}C_{c2} + C_{c1}C_{c2}} \right) \Delta V_3 \rightarrow \Delta V_2 \ decreases.$$

e) If C_{c1} increases, ΔV_1 increases (true/false)

$$\Delta V_1 = \left(\frac{C_{c2}}{K_1 + \frac{K_2}{C_{c1}}}\right) \Delta V_3 \rightarrow \Delta V_1 \text{ increases.}$$

f) If C_{c2} increases, ΔV_1 increases (true/false).

$$\Delta V_1 = \left(\frac{C_{c1}}{K_1 + \frac{K_2}{C_{c2}}}\right) \Delta V_3 \rightarrow \Delta V_1 \text{ increases.}$$

g) If C_{c2} increases, ΔV_2 increases (true/false).

$$\Delta V_2 = \frac{1}{\left(1 + \frac{K}{C_{c2}}\right)} \Delta V_3 \rightarrow \Delta V_2 \text{ increases.}$$

Problem #3 (Coupling Minimization, 20 points).

1-10 points) Compute effective capacitance for the net in the middle (d_m) for the following transition patterns:

Transition patterns (d _{m+1} d _m d _{m-1})	Effective cap of d _m
010 → 000	C _L +2C _c
010 → 001	C _L +3C _c
010 → 100	C _L +3C _c
010 → 101	C _L +4C _c

2-10 points) A bus consisting of five bits ($b_1 b_2 b_3 b_4 b_5$) is routed in three metal layers. Due to some unknown reasons, four of them ($b_1 b_2 b_4 b_5$) are routed in parallel with b_3 . The following shows the coupling capacitance among the five nets.

Due to the coupling between b_3 and b_k , the worst-case effective coupling capacitance that b_3 experiences will be $8 \cdot C_c$. List all transition patterns that make b_3 experience $8 \cdot C_c$ and $7 \cdot C_c$.

 $8C_c$: 00100 \leftrightarrow 11011

```
7C_c: 00100 \leftrightarrow 11010 \ / \ 00100 \leftrightarrow 11001 \ / \ 00100 \leftrightarrow 10011 \ / \ 00100 \leftrightarrow 01011 11011 \leftrightarrow 00101 \ / \ 11011 \leftrightarrow 00110 \ / \ 11011 \leftrightarrow 01100 \ / \ 11011 \leftrightarrow 10100
```

Problem #4 (Buffer Insertion, 20 points).

A source (type: BUF_X1) drives a sink (type: BUF_X2) through a net and you are supposed to insert a buffer (type: BUF_X1) between them as shown in the above figure. Find an optimal location of the buffer minimizing the total delay, i.e., represent "s" as a function of the following parameters.

- Output resistance of BUF_X1: R₁
- Input capacitance of BUF_X1: C₁
- Input capacitance of BUF_X2: C₂
- Total length of the net: L (um)
- Total wire resistance: R_w
- Total wire capacitance: C_w
- $(C_w + C_2 > C_1)$

$$\begin{split} \text{Delay} &= \tau = \left(R_1 \left(C_w \cdot \frac{s}{L} + C_1 \right) + R_w \cdot \frac{s}{L} \cdot C_1 + \frac{1}{2} \left(R_w \frac{s}{L} \right) \left(C_w \frac{s}{L} \right) \right) \\ &+ \left(R_1 \left(C_w \cdot \frac{L - s}{L} + C_2 \right) + R_w \cdot \frac{L - s}{L} \cdot C_2 + \frac{1}{2} \left(R_w \frac{L - s}{L} \right) \left(C_w \frac{L - s}{L} \right) \right) \\ &= R_1 C_w + R_1 C_1 + R_1 C_2 + R_w \left(\frac{s}{L} \cdot C_1 + \frac{L - s}{L} \cdot C_2 \right) + \frac{1}{2L^2} R_w C_w (s^2 + s^2 - 2Ls + L^2) \\ &\frac{d\tau}{ds} = \frac{R_w C_1}{L} - \frac{R_w C_2}{L} + \frac{R_w C_w}{2L^2} \left(4s - 2L \right) = 0 \\ &s \left(\frac{2R_w C_w}{L^2} \right) = \frac{R_w C_w}{L} + \frac{R_w (C_2 - C_1)}{L} \end{split}$$

$$\therefore s = \frac{L(C_w + C_2 - C_1)}{2C_w}$$