EE434 ASIC and Digital Systems

Midterm Exam 2

April 8, 2016. (5:10pm - 6pm)

Instructor: Dae Hyun Kim (daehyun@eecs.wsu.edu)

Name:

WSU ID:

Problem	Points	
1	15	
2	15	
3	15	
4	10	
5	13	
6	12	
Total	80	

^{*} Allowed: Textbooks, cheat sheets, class notes, notebooks, calculators, watches

^{*} Not allowed: Electronic devices (smart phones, tablet PCs, laptops, etc.) except calculators and watches

Problem #1 (Layout, 15 points).

Represent Out as a Boolean function of A and B or describe the function of the following layout in as much detail as possible (Primary inputs: A, B. Primary output: Out).

Problem #2 (Layout, 15 points).

Represent Out as a Boolean function of A, B and C or describe the function of the following layout in as much detail as possible (Primary inputs: A, B, C. Primary output: Out).

Problem #3 (Timing Analysis, 15 points).

Four flip-flops are connected as shown above.

- F/F internal delay: $t_{CO} = 50ps$
- Setup time of each F/F: $t_s = 50ps$
- Delay of Logic 1: $t_{d1} = 450ps$
- Delay of Logic 2: $t_{d2} = 480ps$
- Delay of Logic 3: $t_{d3} = 250ps$
- Delay of the clock from the clock source to FF1: $t_{c1} = 400ps$
- Delay of the clock from the clock source to FF#: $t_{c\#}$ (#=2, 3, 4)

Since the delays of Logic 1 and Logic 2 are too large, Logic 1 and Logic 2 will violate the setup time constraint if the clock skew is zero (i.e., $t_{c1} = t_{c2} = t_{c3} = t_{c4}$). To resolve this issue, we want to intentionally use the clock skew. However, we also want to minimize the total clock delay ($t_{c1} + t_{c2} + t_{c3} + t_{c4}$) to minimize the clock power consumption. Find t_{c2} , t_{c3} , and t_{c4} that satisfies the setup time constraint and minimizes the total clock delay ($t_{c1} + t_{c2} + t_{c3} + t_{c4}$).

Problem #4 (Timing Analysis, 10 points).

Can a path have both setup and hold time violations at the same time? Yes/No. Explain why.

Problem #5 (Interconnect, 13 points).

A source (type: BUF_X1) drives a sink (type: BUF_X2) through a net and you are supposed to <u>optimally</u> insert N-1 buffers (type: BUF_X1) between them. <u>Find the number of buffers to insert (i.e., find N) and the optimal locations of the buffers (i.e., find $s_1, s_2, ..., s_N$) minimizing the total delay.</u>

- Output resistance of BUF_X1: R₁
- Input capacitance of BUF_X1: C1
- Input capacitance of BUF_X2: C2
- Total length of the net: L (um)
- Unit wire resistance: r_w
- Unit wire capacitance: c_w

Problem #6 (Interconnect, 12 points).

A source (type: BUF_X1) drives a sink (type: BUF_X2) through a net and we want to <u>optimally</u> insert a buffer (type: BUF_X4) between them to minimize the total signal delay as shown in the figure below. s is the distance between the source and the buffer. Answer the following questions.

- Output resistance of each cell: $R_{\#}$ ($R_1 > R_2 > R_4$)
- Input capacitance of each cell: $C_{\#}$ ($C_1 < C_2 < C_4$)
- Unit wire resistance and capacitance: r_w , c_w
- 1) If R_4 goes up, s should go up. (True/False)
- 2) If C_4 goes up, s should go up. (True/False)
- 3) If R_1 goes up, s should go up. (True/False)
- 4) If C_2 goes up, s should go up. (True/False)
- 5) If r_w goes up, s should go up. (True/False)
- 6) If c_w goes up, s should go up. (True/False)