EE434 ASIC and Digital Systems

Midterm Exam 2

Mar. 31, 2017. (4:10pm - 5pm)

Instructor: Dae Hyun Kim (daehyun@eecs.wsu.edu)

Name:

WSU ID:

Problem	Points	
1	10	
2	10	
3	10	
4	10	
5	10	
Total	50	

^{*} Allowed: Textbooks, cheat sheets, class notes, notebooks, calculators, watches

^{*} Not allowed: Electronic devices (smart phones, tablet PCs, laptops, etc.) except calculators and watches

Problem #1 (Layout, 10 points).

Represent Out as a Boolean function of A, B, C, D, E, F.

Problem #2 (DC Characteristics, 10 points).

An infinite chain of inverters is defined as follows:

All the inverters are identical, i.e., have the same characteristics. The above chain is modeled as a block diagram as follows:

where *Noise* k is the k-th noise and *Source* is a signal generator and $V_{Source} = V_{DD} \cdot u(t)$ (i.e., 0 if t < 0 and V_{DD} if $t \ge 0$). $V_{DD} = 1V$. The DC characteristic of an inverter is approximated using three segments as follows (If $V_{in} \ge V_{DD}$, $V_{out} = 0$. If $V_{in} \le 0$, $V_{out} = V_{DD}$.):

1)
$$V_{out} = \frac{V_{OH} - V_{DD}}{V_{IL}} \cdot V_{in} + V_{DD}$$

2)
$$V_{out} = \frac{V_{OL} - V_{OH}}{V_{IH} - V_{IL}} \cdot (V_{in} - V_{IH}) + V_{OL}$$

3)
$$V_{out} = -\frac{V_{OL}}{V_{DD} - V_{IH}} \cdot (V_{in} - V_{DD})$$

Each noise source is an independent voltage signal and its range is as follows ($V_N > 0$):

• $|V_{noise}| \le V_N$

Compute the max. value of V_N that does not cause signal inversion for the following two cases (Note: Signal inversion occurs if a signal reaches 0.5V when it should be 0 or 1):

• Case 1)
$$V_{OL} = 0V$$
, $V_{OH} = 1V$, $V_{IL} = 0.4V$, $V_{IH} = 0.6V$

• Case 2)
$$V_{OL} = 0V$$
, $V_{OH} = 1V$, $V_{IL} = 0.4V$, $V_{IH} = 0.8V$

Problem #3 (Elmore Delay, 10 points).

The RC tree shown below has two delay constraints as follows:

- The delay from the driver to V_{L1} should be less than or equal to 900ps.
- The delay from the driver to V_{L2} should be less than or equal to 6823ps.

Currently, the delay at V_{L1} is $1k * 11f + 1k * 12f + \cdots + 1k * 29f + 1k * 59f + 1k * 60f + \cdots + 1k * 79f = 1829ps$, so is the delay at V_{L2} .

You are supposed to insert <u>only one buffer</u> in the RC tree to satisfy the delay constraints at both V_{L1} and V_{L2} . You can insert the buffer only into one of the designated nodes (n1 ~ n60). The buffer has the following characteristics:

Input capacitance: 10fF
 Internal delay: 20ps
 Output resistance: 1kΩ

When you insert a buffer into a node, the RC tree before and after the buffer are separated as follows (assuming the buffer is inserted into n2 in the figure above):

In this case (inserting a buffer into n2), the delay at V_{L1} is $[1k*11f+1k*12f+\cdots+1k*29f+1k*59f+1k*60f+\cdots+1k*77f+1k*77f]+[20ps]+[1k*11f+1k*12f]=(1749+20+23)ps=1792ps$, so is the delay at V_{L2} . As you see, the delay is reduced from 1829ps to 1792ps.

Insert a buffer into one of the nodes ($n1 \sim n60$) so that it satisfies the delay constraints at both V_{L1} and V_{L2} . Then, compute the Elmore delay at V_{L1} .

(Help: The sum of a, a+1, a+2, ..., n is $\frac{(n+a)(n-a+1)}{2}$. For example, $5+6+\cdots+10=\frac{(10+5)(10-5+1)}{2}=45$.)

Node:

Elmore delay at V_{L1} :

Problem #4 (Pseudo-nMOS, 10 points).

Draw a pseudo-nMOS schematic for $Y = \overline{A \cdot B \cdot C + (D + E) \cdot F}$ and properly size the nFETs to achieve the following output level for logic output 0:

• $V_{out} \le 0.1 V_{DD}$

Use the following parameters:

- Resistance of a $1 \times nFET = Resistance$ of a $2 \times pFET$
- The size of the pFET: $4 \times$
- Do not use the transistor-mode-based computation for sizing. You can just use the resistance values for sizing.
- Do not oversize the nFETs.

Problem #5 (Capacitive Coupling, 10 points).

The following figure models the coupling effect between two adjacent wires.

 $V_1(t)$ is an aggressor and $V_2(t)$ is a victim. $V_2(t)$ is as follows:

$$V_2(t) = \frac{V_{DD}}{2} \left[e^{-\frac{t}{\tau_1}} - e^{-\frac{t}{\tau_2}} \right] u(t)$$

where

$$\bullet \quad \tau_1 = R(C + C_L + 2C_C)$$

$$\bullet \quad \tau_2 = R(C + C_L)$$

In this case, the max. value of $V_2(t)$ is found by differentiating $V_2(t)$ with respect to t. The max. value occurs when t is

$$t_{max} = \frac{R(C + C_L)(C + C_L + 2C_C)}{2} \cdot \ln \frac{C + C_L + 2C_C}{C + C_L}$$

and the max. value of $V_2(t)$ is

$$V_{2,max} = \frac{V_{DD}}{2} \cdot \left(1 - \frac{\tau_2}{\tau_1}\right) \cdot \left(\frac{\tau_2}{\tau_1}\right)^{\frac{\tau_2}{2RC_C}}$$

Answer the following questions (Hint: Use the above formula or your intuition to solve this problem):

- If C_C increases, $V_{2,max}$ increases. (True/False)
- If C increases, $V_{2,max}$ increases. (True/False)
- If C_L increases, $V_{2,max}$ increases. (True/False)
- If R increases, $V_{2,max}$ increases. (True/False)
- The max. value of $V_2(t)$ can be greater than $V_{DD}/2$. (True/False)

(Hint:
$$\lim_{x\to\infty} \left(\frac{1}{x}\right)^{\frac{1}{x}} = 1$$
. $\lim_{x\to\infty} \left(\frac{x}{x+c}\right)^{\frac{x}{c}} = e$. $\left(\frac{x}{x+c}\right)^{\frac{x}{c}} > 1$. (when $c > 0$))