EE434 ASIC and Digital Systems

Midterm Exam 1

Feb. 27, 2019. (4:10pm – 5pm)

Instructor: Dae Hyun Kim (daehyun@eecs.wsu.edu)

Name:

WSU ID:

Problem	Points	
1	10	
2	10	
3	10	
4	20	
5	20	
6	10	
Total	80	

Problem #1 (Static CMOS gates, 10 points)

The following shows the NFET network of a static CMOS gate. Express the output Y as a Boolean function of the inputs $(A \sim I)$. (You don't need to simplify the expression.)

Problem #2 (Transmission Gates, 10 points)

<u>Design (draw a schematic) the following Boolean function using transmission gates only.</u>

$$Y = (A \oplus B) + \overline{((A \cdot B) \oplus C)}$$

Available inputs: $A, B, C, \bar{A}, \bar{B}, \bar{C}$. You cannot use Power (V_{DD}) and Ground (V_{SS}) . Use the following symbols for the transmission gates.

$$-\frac{\bar{S}}{\bar{S}} = -C$$

$$\frac{\bar{S}}{\bar{S}} = -C$$

$$\frac{\bar{S}}{\bar{S}} = -C$$

(# TGs≤6: 10 points. 7≤# TGs≤8: 7 points. 9≤# TGs≤10: 5 points. # TGs>10: 0 points)

Problem #3 (Transistor Sizing, 10 points)

<u>Size the transistors in the following pull-down network.</u> R_n is the resistance of a 1X NMOS transistor. C_L is the load capacitance. Ignore parasitic capacitances. Target delay: $\tau_T \leq R_n \cdot C_L$. Try to minimize the total area.

(Total width W \leq 31X: 10 points. 31X<W \leq 32X: 8 points. 32X<W \leq 34X: 5 points. 34X<W: 3 points)

A:

B:

C:

D:

E:

F:

G:

H:

1:

Total:

Problem #4 (Transistor Sizing, 20 points)

Solve either 4-(1) or 4-(2). You don't need to solve both.

(1) (20 points) <u>Size the transistors in the following pull-down network.</u> R_n is the resistance of a 1X NMOS transistor. C_L is the load capacitance. Ignore parasitic capacitances. Target delay: $\tau_T \leq R_n \cdot C_L$. <u>Minimize the total area (i.e., size the transistors optimally).</u>

- (2) (12 points) Answer the following questions.
 - (a) The optimal size of transistor A is greater than 4X (True / False).
 - (b) The optimal size of transistor B is greater than 4X (T / F).
 - (c) The optimal size of transistor B is equal to the optimal size of transistor D (T / F).
 - (d) The optimal size of transistor E is greater than 2X (T / F).
 - (e) The optimal size of transistor C is $3 \times$ the optimal size of transistor E (T / F).
- (f) The sum of the optimal widths of all the transistors is greater than or equal to 18X (T/F).

Problem #5 (Layout, 20 points)

Signal input: A, D. Signal output: Y. Clock: CK

1) (10 points) Convert the layout into a transistor-level schematic.

Problem #6 (Layout, 10 points)

Input: A, B

Output: Y

What is the function of this circuit?