EE434

ASIC and Digital Systems

Final Exam

May 5, 2020. (8am - 10am)
Instructor: Dae Hyun Kim (daehyun@eecs.wsu.edu)

Name:
WSU ID:

Problem	Points	
1	30	
2	40	
3	30	
4	50	
5	20	
6	50	
7	40	
Total	260	

Problem \#1 (Interconnects, 30 points)

The figure shows a net composed of three wire segments. The length and unit wire R and C of section $k(k=1,2,3)$ are l_{k}, r_{k}, and c_{k}, respectively as shown in the figure. The output resistance of the driver is R_{0}, the input capacitance of the sink is C_{2}, and the output resistance, input capacitance, and the delay of a buffer is R_{1}, C_{1}, and d_{1}, respectively. We are going to insert a buffer into the second section ($0 \leq x \leq l_{2}$). The first and third sections are not bufferable.
(a) Find the optimal location for the buffer insertion (express x as a function of the constants). (10 points)
(b) Answer the following questions. (Correct: +2 points. Wrong: -1 point. No answer: 0.)
(1) If $R_{0}=R_{1}, C_{1}=C_{2}, r_{1}=r_{2}=r_{3}, c_{1}=c_{2}=c_{3}$, and $l_{1}=l_{2}=l_{3}$, then $x=\frac{1}{2} l_{2}$. (True / False)
(2) If $R_{0}<R_{1}, C_{1}=C_{2}, r_{1}=r_{2}=r_{3}, c_{1}=c_{2}=c_{3}$, and $l_{1}=l_{2}=l_{3}$, then $x<\frac{1}{2} l_{2}$. (True / False)
(3) If $R_{0}=R_{1}, C_{1}<C_{2}, r_{1}=r_{2}=r_{3}, c_{1}=c_{2}=c_{3}$, and $l_{1}=l_{2}=l_{3}$, then $x<\frac{1}{2} l_{2}$. (True $/$ False)
(4) If $R_{0}=R_{1}, C_{1}=C_{2}, r_{1}<r_{2}=r_{3}, c_{1}=c_{2}=c_{3}$, and $l_{1}=l_{2}=l_{3}$, then $x<\frac{1}{2} l_{2}$. (True /False)
(5) If $R_{0}=R_{1}, C_{1}=C_{2}, r_{1}=r_{2}>r_{3}, c_{1}=c_{2}=c_{3}$, and $l_{1}=l_{2}=l_{3}$, then $x<\frac{1}{2} l_{2}$. (True $/$ False)
(6) If $R_{0}=R_{1}, C_{1}=C_{2}, r_{1}=r_{2}=r_{3}, c_{1}<c_{2}=c_{3}$, and $l_{1}=l_{2}=l_{3}$, then $x<\frac{1}{2} l_{2}$. (True / False)
(7) If $R_{0}=R_{1}, C_{1}=C_{2}, r_{1}=r_{2}=r_{3}, c_{1}=c_{2}>c_{3}$, and $l_{1}=l_{2}=l_{3}$, then $x<\frac{1}{2} l_{2}$. (True /False)
(8) If $R_{0}=R_{1}, C_{1}=C_{2}, r_{1}=r_{2}=r_{3}, c_{1}=c_{2}=c_{3}$, and $l_{1}<l_{2}=l_{3}$, then $x<\frac{1}{2} l_{2}$. (True /False)
(9) If $R_{0}=R_{1}, C_{1}=C_{2}, r_{1}=r_{2}=r_{3}, c_{1}=c_{2}=c_{3}$, and $l_{1}=l_{2}>l_{3}$, then $x<\frac{1}{2} l_{2}$. (True / False)
(10) If r_{3} increases, x increases (i.e., the optimal buffer location is shifted to the right.) (True / False)

Problem \#2 (Interconnects, 40 points)

The figure shows a net composed of a long wire whose unit resistance and capacitance are r and c, respectively. We want to insert two buffers, Buffer 1 and Buffer 2 ($0 \leq x$, $0 \leq y, x+y \leq L)$. The output resistance ($R_{\#}$), input capacitance ($C_{\#}$), and internal delay $\left(d_{\#}\right)$ of each cell are shown above.
(a) Find the optimal locations for Buffer 1 and Buffer 2 (express x (and also y) as a function of the constants). Hint: Express the total delay as a function of x and y. Then, different it w.r.t. x and set it to zero. Differentiate it w.r.t. y and set it to zero. Then, you get two equations for two variables, x and y. Solve it. (12 points)
$x=$
$y=$
(b) Answer the following questions. (Correct: +2 points. Wrong: -1 point. No answer: 0.)

Notice that if x increases, Buffer 1 is shifted to the right.
However, if y increases, Buffer 2 is shifted to the left.
(1) If $R_{0}=R_{1}=R_{2}$ and $C_{1}=C_{2}=C_{3}$, then $x=\frac{1}{3} L$. (True / False)
(2) If $R_{0}=R_{1}=R_{2}$ and $C_{1}=C_{2}=C_{3}$, then $y=\frac{1}{3} L$. (True / False)
(3) If R_{0} increases, x increases. (True / False)
(4) If R_{0} increases, y increases. (True / False)
(5) If R_{1} increases, x increases. (True / False)
(6) If R_{1} increases, y increases. (True / False)
(7) If R_{2} increases, x increases. (True / False)
(8) If R_{2} increases, y increases. (True / False)
(9) If C_{1} increases, x increases. (True / False)
(10) If C_{1} increases, y increases. (True / False)
(11) If C_{2} increases, x increases. (True / False)
(12) If C_{2} increases, y increases. (True / False)
(13) If C_{3} increases, x increases. (True / False)
(14) If C_{3} increases, y increases. (True / False)

Problem \#3 (Interconnects, 30 points)

The figure shows a long wire whose length, unit resistance and capacitance are L, r, and c, respectively. We want to insert a buffer $(0 \leq x \leq L)$. The size of the buffer is s and its output resistance, input capacitance, and internal delay are as follows:

- Output resistance: $\frac{R}{s}$ (where R is a constant)
- Input capacitance: $s P$ (where P is a constant)
- Internal delay: $s D$ (where D is a constant)

Notice that there are two variables, x and s.
(a) Express the total delay as a function of the variables and the constants. (7 points)
$\tau=$
(b) Assuming the location (x) is given (i.e., you can treat it as a constant.), find the optimal size (s) of the buffer, i.e., express the optimal value of s as a function of the constants and x. (7 points)
$s=$
(c) Answer the following questions. (Correct: +2 points. Wrong: -1 point. No answer: 0 .)
(1) If x increases, s increases. (True / False)
(2) If R increases, s increases. (True / False)
(3) If c increases, s increases. (True / False)
(4) If C_{2} increases, s increases. (True / False)
(5) If R_{0} increases, s increases. (True / False)
(6) If r increases, s increases. (True / False)
(7) If P increases, s increases. (True / False)
(8) If D increases, s increases. (True / False)

Problem \#4 (Coupling, 50 points)

The figure shows three parallel nets. The coupling capacitance between Net 1 and Net 2 is C_{C}. The coupling capacitance between Net 2 and Net 3 is $2 C_{C}$. The following shows a three-bit binary encoding technique for four decimal numbers $(0,1,2,3)$.

Value	Encoding
0	000
1	010
2	101
3	111

(1) Calculate the total effective capacitance of Net 1 for all possible transitions $(0 \rightarrow 1$, $0 \rightarrow 2,0 \rightarrow 3,1 \rightarrow 0,1 \rightarrow 2,1 \rightarrow 3,2 \rightarrow 0,2 \rightarrow 1,2 \rightarrow 3,3 \rightarrow 0,3 \rightarrow 1,3 \rightarrow 2$) for the encoding technique, i.e., calculate the sum of the effective capacitances of Net 1 for all possible transitions. (10 points)
(2) Repeat it for Net 2. (10 points)
(3) Repeat it for Net 3. (10 points)
(4) Find a new three-bit encoding of the four values $(0,1,2,3)$ that minimizes the total effective capacitance of the three nets for all possible transitions (Assume $C_{g}=C_{c}$). (20 points)

Value	Encoding
0	
1	
2	
3	

Total effective capacitance (for Net $1+$ for Net $2+$ for Net 3):

Problem \#5 (Testing, 20 points)

The following shows $H=(a+b) \oplus(c \cdot d) \oplus(\overline{e \oplus f})$. Answer the following questions.

(1) Find all input vectors that can detect a s-a-0 fault at input a. (10 points)
(2) Find all input vectors that can detect a s-a-1 fault at input e. (10 points)

Problem \#6 (Static Timing Analysis, 50 points)

The following shows two pipelining methodologies. Figure (a) shows a logic in a single pipeline stage. Figure (b) shows a partitioned version in which two pipeline stages are cascaded and the flip-flop in the middle is negative-edge-triggered.

(a)

(b)

Parameters

- d_{1}, d_{2}, d_{3} : The delay from the clock source to Flip-Flop 1, 2, 3
- c_{1}, c_{2}, c_{3} : Clock-to-Q delay ($T_{C Q}$) of Flip-Flop 1, 2, 3
- s_{1}, s_{2}, s_{3} : Setup time of Flip-Flop 1, 2, 3
- T_{A}, T_{B} : Clock period for Figure (a) and (b)
- $\quad N(\gg 1)$: \# instructions to execute
- T_{L} : The logic delay in Figure (a). In Figure (b), the delay of each logic is $\frac{T_{L}}{2}$.
- Execution time of the system in Figure (a): $(N+1) \cdot T_{A}$
- Execution time of the system in Figure (b): $(N+3) \cdot T_{B}$

For the clock periods, we use the minimum clock periods that satisfy all the setup time constraints. Notice that the clock duty cycle is 50%.
(1) The system in Figure (a) has one setup time constraint. Show the inequality. (10 points)

Answer: $\quad \leq T_{A}$
(2) The system in Figure (b) has two setup time constraints. Show the inequalities. (16 points)

Answer:

$$
\begin{aligned}
& \leq \frac{T_{B}}{2} \\
& \leq \frac{T_{B}}{2}
\end{aligned}
$$

You can merge these two inequalities by just adding them.

$$
\leq T_{B}
$$

Use the left term for the next problems.
(3) Now, you have execution times for Figure (a) and (b). Answer the following questions. (24 points)
(a) For Figure (a): If d_{1} increases, the execution time increases (True / False).
(b) For Figure (a): If c_{1} increases, the execution time increases (True / False).
(c) For Figure (a): If T_{L} increases, the execution time increases (True / False).
(d) For Figure (a): If d_{3} increases, the execution time increases (True / False).
(e) For Figure (a): If s_{3} increases, the execution time increases (True / False).
(f) For Figure (b): If d_{1} increases, the execution time increases (True / False).
(g) For Figure (b): If c_{1} increases, the execution time increases (True / False).
(h) For Figure (b): If T_{L} increases, the execution time increases (True / False).
(i) For Figure (b): If d_{3} increases, the execution time increases (True / False).
(j) For Figure (b): If s_{2} increases, the execution time increases (True / False).
(k) For Figure (b): If s_{3} increases, the execution time increases (True / False).
(I) For Figure (b): If c_{2} increases, the execution time increases (True / False).

Problem \#7 (Static Timing Analysis, 40 points)

The following shows two gates B and C, which are in the middle of a circuit.

"A gate has a (setup or hold) time violation" means that at least one of the paths going through the gate violates given (setup or hold) time constraints.
(1) Is it possible that gate B has a setup-time violation and gate C has a setup-time violation? Explain why.
(2) Is it possible that gate B has a setup-time violation and gate C has a hold-time violation? Explain why.
(3) Is it possible that gate B has a hold-time violation and gate C has a setup-time violation? Explain why.
(4) Is it possible that gate B has a hold-time violation and gate C has a hold-time violation? Explain why.

