EE434

ASIC and Digital Systems

Midterm Exam 1

Mar. 4, 2020. (2:10pm - 3pm)

Instructor: Dae Hyun Kim (<u>daehyun@eecs.wsu.edu</u>)

Name:

WSU ID:

Problem	Points	
1	10	
2	10	
3	10	
4	10	
5	10	
6	10	
7	10	
8	10	
Total	80	

Problem #1 (Static CMOS gates, 10 points)

Design the following logic using the static CMOS design methodology. Try to minimize the # transistors. Available input: *A*, *B*, *C*, *D*.

$$Y = \overline{A + \overline{B} \cdot \overline{C} \cdot \overline{D}}$$

If we design it directly, we will need eight TRs + six TRs (for three inverters) = 14 TRs. However, if we design $Y = \overline{\overline{A} + \overline{B} \cdot \overline{C} \cdot \overline{D}} = \overline{\overline{A} \cdot (B + C + D)}$, we will need eight TRs + four TRs (two for the inverter for \overline{A} and two for the outer (last-level) inverter).

Left: 8 + 2 + 2 + 2 = 14 TRs (7 points)

Right: 8 + 2 + 2 = 12 TRs (10 points)

Problem #2 (Static CMOS gates, 10 points)

Design the following logic using the static CMOS design methodology. Try to minimize the # transistors. Available input: *A*, *B*, *C*, *D*.

$$Y = A \cdot B \cdot (\bar{C} + \bar{D})$$

$$Y = \overline{A} + \overline{B} + C \cdot D$$

8 + 4 = 12 TRs (10 points)

Problem #3 (Static CMOS gates, 10 points)

The following shows the NFET network of a static CMOS gate. Express the output *Y* as a Boolean function of the inputs $(A \sim F)$. (You don't need to simplify the expression.)

Problem #4 (Static CMOS gates, 10 points)

The following shows the PFET network of a static CMOS gate. Express the output *Y* as a Boolean function of the inputs $(A \sim E)$. (You don't need to simplify the expression.)

 $Y = (\overline{A} \cdot (\overline{B} + \overline{C}) + \overline{D}) \cdot \overline{E} = \overline{(A + BC) \cdot D + E}$

Problem #5 (Transmission Gates, 10 points)

Design (draw a schematic) the following Boolean function using transmission gates only.

$$Y = A \oplus (B \cdot (C \oplus D))$$

Available inputs: *A*, *B*, *C*, *D*, 0, 1. Use the following symbols for the transmission gates.

(# TGs≤12: 10 points. 13≤# TGs≤15: 7 points. 16≤# TGs≤18: 5 points. # TGs>18: 3 points)

Problem #6 (Sequential Logic, 10 points)

The following truth table shows the function of a sequential logic. CK is the clock signal. A, B, D, E, and F are data or control (e.g., reset) signals. <u>What does the gate do??</u> <u>Explain the function in detail.</u>

А	В	D	E	F	СК	Q+
0	Х	0	E	Х	Ļ	E
0	Х	1	Х	F	\downarrow	F
1	В	Х	Х	Х	\downarrow	В
X	Х	Х	Х	Х	↑ (Q
Х	Х	Х	Х	Х	0 or 1	Q

It is a <u>negative-edge-triggered</u> D-FF with the following features:

- A and D are used as input signal selectors as follows:
 - A=0, D=0: E is the data input.
 - A=0, D=1: F is the data input.
 - A=1: B is the data input.

Problem #7 (Analysis, 10 points)

What do the following circuits do? (You can ignore the numbers in the schematics.) For each schematic, you can draw a truth table or express the output as a function of the inputs.

Problem #8 (Sequential Logic, 10 points)

Explain the function of the following logic. CK: Clock. D, E: Data and/or control input.

If E=0, Q=hold regardless of the clock signal.

If E=1, it is a normal positive-edge-triggered D-F/F (in this case, D is the data input).