EE434

ASIC and Digital Systems

Midterm Exam 1

Mar. 4, 2020. (2:10pm - 3pm)
Instructor: Dae Hyun Kim (daehyun@eecs.wsu.edu)

Name:
WSU ID:

Problem	Points	
1	10	
2	10	
3	10	
4	10	
5	10	
6	10	
7	10	
8	10	
Total	80	

Problem \#1 (Static CMOS gates, 10 points)

Design the following logic using the static CMOS design methodology. Try to minimize the \# transistors. Available input: A, B, C, D.

$$
Y=\overline{A+\bar{B} \cdot \bar{C} \cdot \bar{D}}
$$

Problem \#2 (Static CMOS gates, 10 points)

Design the following logic using the static CMOS design methodology. Try to minimize the \# transistors. Available input: A, B, C, D.

$$
Y=A \cdot B \cdot(\bar{C}+\bar{D})
$$

Problem \#3 (Static CMOS gates, 10 points)

The following shows the NFET network of a static CMOS gate. Express the output Y as a Boolean function of the inputs $(A \sim F)$. (You don't need to simplify the expression.)

Problem \#4 (Static CMOS gates, 10 points)

The following shows the PFET network of a static CMOS gate. Express the output Y as a Boolean function of the inputs $(A \sim E)$. (You don't need to simplify the expression.)

Problem \#5 (Transmission Gates, 10 points)

Design (draw a schematic) the following Boolean function using transmission gates only.

$$
Y=A \oplus(B \cdot(C \oplus D))
$$

Available inputs: $A, B, C, D, 0,1$. Use the following symbols for the transmission gates.

(\# TGs $\leq 12: 10$ points. $13 \leq \# ~ T G s \leq 15: 7$ points. $16 \leq \# T G s \leq 18: 5$ points. \# TGs>18: 3 points)

Problem \#6 (Sequential Logic, 10 points)

The following truth table shows the function of a sequential logic. CK is the clock signal. A, B, D, E, and F are data or control (e.g., reset) signals. What does the gate do?? Explain the function in detail.

A	B	D	E	F	CK	Q^{+}
0	X	0	E	X	\downarrow	E
0	X	1	X	F	\downarrow	F
1	B	X	X	X	\downarrow	B
X	X	X	X	X	\uparrow	Q
X	X	X	X	X	0 or 1	Q

Problem \#7 (Analysis, 10 points)

What do the following circuits do? (You can ignore the numbers in the schematics.) For each schematic, you can draw a truth table or express the output as a function of the inputs.

(JSSC'97)

(JSSC'96)

Problem \#8 (Sequential Logic, 10 points)
Explain the function of the following logic. CK: Clock. D, E: Data and/or control input.

