EE434 ASIC and Digital Systems

Midterm Exam 1

Mar. 4, 2020. (2:10pm - 3pm)

Instructor: Dae Hyun Kim (<u>daehyun@eecs.wsu.edu</u>)

Name:

WSU ID:

Problem	Points	
1	10	
2	10	
3	10	
4	10	
5	10	
6	10	
7	10	
8	10	
Total	80	

Problem #1 (Static CMOS gates, 10 points)

Design the following logic using the static CMOS design methodology. Try to minimize the # transistors. Available input: A, B, C, D.

$$Y = \overline{A + \overline{B} \cdot \overline{C} \cdot \overline{D}}$$

Problem #2 (Static CMOS gates, 10 points)

Design the following logic using the static CMOS design methodology. Try to minimize the # transistors. Available input: A, B, C, D.

$$Y = A \cdot B \cdot (\bar{C} + \overline{D})$$

Problem #3 (Static CMOS gates, 10 points)

The following shows the NFET network of a static CMOS gate. Express the output Y as a Boolean function of the inputs $(A \sim F)$. (You don't need to simplify the expression.)

Problem #4 (Static CMOS gates, 10 points)

The following shows the PFET network of a static CMOS gate. Express the output Y as a Boolean function of the inputs $(A \sim E)$. (You don't need to simplify the expression.)

Problem #5 (Transmission Gates, 10 points)

<u>Design (draw a schematic) the following Boolean function using transmission gates only.</u>

$$Y = A \oplus (B \cdot (C \oplus D))$$

Available inputs: *A*, *B*, *C*, *D*, 0, 1. Use the following symbols for the transmission gates.

$$\frac{\bar{S}}{\bar{S}} = -C$$

$$\frac{\bar{S}}{\bar{S}} = -C$$

$$\frac{\bar{S}}{\bar{S}} = -C$$

(# TGs≤12: 10 points. 13≤# TGs≤15: 7 points. 16≤# TGs≤18: 5 points. # TGs>18: 3 points)

Problem #6 (Sequential Logic, 10 points)

The following truth table shows the function of a sequential logic. CK is the clock signal. A, B, D, E, and F are data or control (e.g., reset) signals. What does the gate do?? Explain the function in detail.

Α	В	D	Е	F	CK	Q ⁺
0	Х	0	Е	Х	1	E
0	X	1	Χ	F	Ŭ Û	F
1	В	Х	Х	Х	<u> </u>	В
Х	Х	Х	Х	Χ	1	Q
Х	Х	Х	Х	Х	0 or 1	Q

Problem #7 (Analysis, 10 points)

What do the following circuits do? (You can ignore the numbers in the schematics.) For each schematic, you can draw a truth table or express the output as a function of the inputs.

(JSSC'97)

(JSSC'96)

Problem #8 (Sequential Logic, 10 points)

Explain the function of the following logic. CK: Clock. D, E: Data and/or control input.

