
EE434 

ASIC and Digital Systems 

 

Midterm Exam 2 

Apr. 8, 2020. (2:10pm – 3pm) 

Instructor: Dae Hyun Kim (daehyun@eecs.wsu.edu) 

 

       Name: 

       WSU ID: 

 

Problem Points  
1 10  
2 10  
3 20  
4 10  
5 10  
6 10  
7 10  

Total 80  
 

 

 

 

 

 

 

 

mailto:daehyun@eecs.wsu.edu


Problem #1 (Transistor Sizing, 10 points) 

Size the transistors in the following NFET network. Timing constraint: 𝜏𝜏 ≤ 𝑅𝑅𝑛𝑛𝐶𝐶𝐿𝐿. 
𝜇𝜇𝑛𝑛
𝜇𝜇𝑝𝑝

= 2. 

𝑅𝑅𝑛𝑛 is the resistance of a 1X NFET. Try to minimize the total TR width heuristically. 

 

The longest path is EFBC, so we upsize them to 4X. The next longest path is ABC or 
DBG. For ABC, A becomes 2X. For DBG, D and G becomes 8

3
X. 

 
A: 2X 
B: 4X 
C: 4X 
D: 8

3
X 

E: 4X 
F: 4X 
G: 8

3
X 

 
 
 

 

 

 

 

 

 



Problem #2 (Transistor Sizing + Timing Analysis, 10 points) 

In this problem, we will size the transistors of a gate for more complex timing 
constraints. 𝜇𝜇𝑛𝑛

𝜇𝜇𝑝𝑝
= 2. 𝑅𝑅𝑛𝑛 is the resistance of a 1X NFET. Timing constraint: 𝜏𝜏 ≤ 𝑅𝑅𝑛𝑛𝐶𝐶𝐿𝐿. 

 

We usually assume that 𝐴𝐴 and 𝐵𝐵 are available at time 0, so the output 𝑌𝑌 should be 
ready by time 𝑅𝑅𝑛𝑛𝐶𝐶𝐿𝐿. In this problem, 𝐴𝐴 is available at time 𝑡𝑡 = 0 (i.e., the arrival time of 
signal 𝐴𝐴 is 0), but 𝐵𝐵 is available at time 𝑡𝑡 = 𝑅𝑅𝑛𝑛𝐶𝐶𝐿𝐿

2
 (i.e., the arrival time of signal 𝐵𝐵 is 𝑅𝑅𝑛𝑛𝐶𝐶𝐿𝐿

2
). 

The output 𝑌𝑌 should be ready by time 𝑡𝑡 = 𝑅𝑅𝑛𝑛𝐶𝐶𝐿𝐿. Size the transistors to satisfy the timing 
constraint (and you should try to minimize the total TR width). 

NFETs: Now, the timing constraint is 𝑅𝑅𝑛𝑛𝐶𝐶𝐿𝐿
2

. Thus, A and B should be 4X. 

PFETs: For signal 𝐴𝐴, the timing constraint is 𝑅𝑅𝑛𝑛𝐶𝐶𝐿𝐿, so A should be 2X. For signal 𝐵𝐵, the 
timing constraint is 𝑅𝑅𝑛𝑛𝐶𝐶𝐿𝐿

2
, so B should be 4X. 

 

NFETs 

A: 4X 

B: 4X 

PFETs 

A: 2X 

B: 4X 

 

 

 



Problem #3 (Transistor Sizing + Timing Analysis, 20 points) 

This problem is similar to Problem #2. 𝜇𝜇𝑛𝑛
𝜇𝜇𝑝𝑝

= 2. 𝑅𝑅𝑛𝑛 is the resistance of a 1X NFET. Timing 

constraint: 𝜏𝜏 ≤ 𝑅𝑅𝑛𝑛𝐶𝐶𝐿𝐿. The following shows the NFET network of 𝑌𝑌 = (𝐴𝐴𝐴𝐴 + 𝐶𝐶)𝐷𝐷(𝐸𝐸 + 𝐹𝐹𝐹𝐹)��������������������������. 

 

The following shows the arrival times of the input signals. Size the transistors properly 
to satisfy the timing constraint (and you should try to minimize the total TR width). 

• 𝐴𝐴: 𝑡𝑡 = 𝑅𝑅𝑛𝑛𝐶𝐶𝐿𝐿
6

 

• 𝐵𝐵,𝐷𝐷,𝐸𝐸,𝐺𝐺: 𝑡𝑡 = 𝑅𝑅𝑛𝑛𝐶𝐶𝐿𝐿
8

 

• 𝐶𝐶: 𝑡𝑡 = 𝑅𝑅𝑛𝑛𝐶𝐶𝐿𝐿
4

 

• 𝐹𝐹: 𝑡𝑡 = 𝑅𝑅𝑛𝑛𝐶𝐶𝐿𝐿
16

 

For path ABDFG: delay should be ≤ 𝑅𝑅𝑛𝑛𝐶𝐶𝐿𝐿 −
𝑅𝑅𝑛𝑛𝐶𝐶𝐿𝐿
6

= 5𝑅𝑅𝑛𝑛𝐶𝐶𝐿𝐿
6

 

For path ABDE: delay should be ≤ 𝑅𝑅𝑛𝑛𝐶𝐶𝐿𝐿 −
𝑅𝑅𝑛𝑛𝐶𝐶𝐿𝐿
6

= 5𝑅𝑅𝑛𝑛𝐶𝐶𝐿𝐿
6

 

For path CDFG: delay should be ≤ 𝑅𝑅𝑛𝑛𝐶𝐶𝐿𝐿 −
𝑅𝑅𝑛𝑛𝐶𝐶𝐿𝐿
4

= 3𝑅𝑅𝑛𝑛𝐶𝐶𝐿𝐿
4

 

For path CDE: delay should be ≤ 𝑅𝑅𝑛𝑛𝐶𝐶𝐿𝐿 −
𝑅𝑅𝑛𝑛𝐶𝐶𝐿𝐿
4

= 3𝑅𝑅𝑛𝑛𝐶𝐶𝐿𝐿
4

 

Optimize ABDFG first: Size all of them to 𝑎𝑎X. Then, 𝑅𝑅𝑛𝑛
𝑎𝑎
∗ 5 ∗ 𝐶𝐶𝐿𝐿 ≤

5𝑅𝑅𝑛𝑛𝐶𝐶𝐿𝐿
6

, so 𝑎𝑎 = 6X. 

Then, optimize CDFG: Size C to 𝑐𝑐X. Then, (𝑅𝑅𝑛𝑛
𝑐𝑐

+ 𝑅𝑅𝑛𝑛
6
∗ 3) ∗ 𝐶𝐶𝐿𝐿 ≤

3𝑅𝑅𝑛𝑛𝐶𝐶𝐿𝐿
4

, so 𝑐𝑐 = 4X. 

Then, optimize CDE: Size E to 𝑒𝑒X. Then, (𝑅𝑅𝑛𝑛
𝑒𝑒

+ 𝑅𝑅𝑛𝑛
4

+ 𝑅𝑅𝑛𝑛
6

) ∗ 𝐶𝐶𝐿𝐿 ≤
3𝑅𝑅𝑛𝑛𝐶𝐶𝐿𝐿
4

, so 𝑒𝑒 = 3X. 

For ABDE: Delay = �𝑅𝑅𝑛𝑛
6
∗ 3 + 𝑅𝑅𝑛𝑛

3
� ∗ 𝐶𝐶𝐿𝐿 = 5𝑅𝑅𝑛𝑛𝐶𝐶𝐿𝐿

6
≤ 5𝑅𝑅𝑛𝑛𝐶𝐶𝐿𝐿

6
 (satisfies the timing constraint). 

Answer) A, B, D, F, G: 6X. C: 4X. E: 3X. 



Problem #4 (Layout, 20 points) 

Draw a transistor-level schematic for the following layout. 

 

 

 

 

 



Problem #5 (Static Timing Analysis, 10 points) 

If the clock skew for the following logic is too negative or too positive (i.e., too large), it 
won’t work correctly (the signals won’t be captured correctly). Derive two inequalities 
that the clock skew should satisfy. 

 

Use the following constants: 

• Setup time of D-FF 1, 2: 𝑠𝑠1, 𝑠𝑠2 
• Hold time of D-FF 1, 2: ℎ1,ℎ2 
• Clock period: 𝑇𝑇𝐶𝐶𝐶𝐶𝐶𝐶 
• Logic delay: 𝑇𝑇𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 
• C-Q delay of D-FF 1, 2: 𝑐𝑐1, 𝑐𝑐2 
• Delay from the CLK source to D-FF 1, 2: 𝑑𝑑1,𝑑𝑑2 
• The clock skew is defined by 𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑑𝑑2 − 𝑑𝑑1 

If the skew is too large (i.e., 𝑑𝑑2 ≫ 𝑑𝑑1), the hold time violation at D-FF2 will be a problem. 
If the skew is too small (i.e., 𝑑𝑑1 ≫ 𝑑𝑑2), the setup time violation at D-FF2 will be a 
problem. Thus, the result of the logic (𝑑𝑑1 + 𝑐𝑐1 + 𝑇𝑇𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙) should be available after D-FF2 
captures its input correctly (𝑑𝑑2 + ℎ2), but before D-FF2 captures the result of the logic 
(𝑑𝑑2 + 𝑇𝑇𝐶𝐶𝐶𝐶𝐶𝐶 − 𝑠𝑠2). 

𝑑𝑑2 + ℎ2 ≤ 𝑑𝑑1 + 𝑐𝑐1 + 𝑇𝑇𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 ≤ 𝑑𝑑2 + 𝑇𝑇𝐶𝐶𝐶𝐶𝐶𝐶 − 𝑠𝑠2 

Thus,  

 

 

Answer:   𝑐𝑐1 + 𝑇𝑇𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 − 𝑇𝑇𝐶𝐶𝐶𝐶𝐶𝐶 + 𝑠𝑠2 ≤ 𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ≤ 𝑐𝑐1 + 𝑇𝑇𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 − ℎ2 

(Notice that this is just a rearrangement of the setup- and hold-time inequalities we 
studied.) 

 



Problem #6 (Static Timing Analysis, 10 points) 

Find setup and hold time inequalities that the following logic has to satisfy. 

 

Use the following constants: 
• Setup time of D-FF 1, 2, 3, 4: 𝑠𝑠1, 𝑠𝑠2, 𝑠𝑠3, 𝑠𝑠4 
• Hold time of D-FF 1, 2, 3, 4: ℎ1,ℎ2,ℎ3, ℎ4 
• Clock period: 𝑇𝑇𝐶𝐶𝐶𝐶𝐶𝐶 
• C-Q delay of D-FF 1, 2, 3, 4: 𝑐𝑐1, 𝑐𝑐2, 𝑐𝑐3, 𝑐𝑐4 
• Delay from the CLK source to D-FF 1, 2, 3, 4: 𝑑𝑑1,𝑑𝑑2,𝑑𝑑3,𝑑𝑑4 
• Net and gate delays: 𝑛𝑛1, 𝑛𝑛2,𝑛𝑛3,𝑛𝑛4, 𝑎𝑎, 𝑏𝑏 

You can also use MAX and MIN operators. 

Setup: 

𝑀𝑀𝑀𝑀𝑀𝑀[𝑀𝑀𝑀𝑀𝑀𝑀(𝑑𝑑1 + 𝑐𝑐1 + 𝑛𝑛1,𝑑𝑑2 + 𝑐𝑐2 + 𝑛𝑛2) + 𝑎𝑎 + 𝑛𝑛3,𝑑𝑑3 + 𝑐𝑐3 + 𝑛𝑛4] + 𝑏𝑏 + 𝑛𝑛5 ≤ 𝑑𝑑4 + 𝑇𝑇𝐶𝐶𝐶𝐶𝐶𝐶 − 𝑠𝑠4 

 

Hold: 

𝑀𝑀𝑀𝑀𝑀𝑀[𝑀𝑀𝐼𝐼𝐼𝐼(𝑑𝑑1 + 𝑐𝑐1 + 𝑛𝑛1,𝑑𝑑2 + 𝑐𝑐2 + 𝑛𝑛2) + 𝑎𝑎 + 𝑛𝑛3, 𝑑𝑑3 + 𝑐𝑐3 + 𝑛𝑛4] + 𝑏𝑏 + 𝑛𝑛5 ≥ 𝑑𝑑4 + ℎ4 

 

 

 

 

 



Problem #7 (Static Timing Analysis + Pipelining, 10 points) 

Suppose an (ideally-partitionable) logic is given. Its delay is 𝑑𝑑. If we partition it into 𝑝𝑝 
equally-distributed pipeline stages, the delay of the sub-logic in each pipeline stage 
becomes 𝑑𝑑

𝑝𝑝
 (Notice that 𝑝𝑝 ≥ 1). 

If we run 𝑁𝑁 instructions sequentially in the pipeline, it takes total #(𝑁𝑁 + 𝑝𝑝 − 1) clock 
cycles to execute all the instructions. The total execution time is (𝑁𝑁 + 𝑝𝑝 − 1) ∙ 𝑇𝑇𝑝𝑝 where 
𝑇𝑇𝑝𝑝 is the clock period for the 𝑝𝑝-pipelined system. 

All the flip-flops have the same characteristics: 

• C-Q delay: 𝑐𝑐 
• Setup time: 𝑠𝑠 
• Hold time: ℎ 

Answer the following questions. 

The system should satisfy the typical setup and hold time constraints. 

ℎ − 𝑐𝑐 ≤
𝑑𝑑
𝑝𝑝
≤ 𝑇𝑇𝑝𝑝 − (𝑐𝑐 + 𝑠𝑠) 

(1) Assume 𝑐𝑐 > 0, 𝑠𝑠 > 0, ℎ > 0, ℎ > 𝑐𝑐, and the clock skew is zero. Find the maximum value of 𝑝𝑝 that does 
not lead to hold-time violations. 

From the inequality above, the maximum value of 𝑝𝑝 is 𝑑𝑑
ℎ−𝑐𝑐

. 

(2) Assume 𝑐𝑐 > 0, 𝑠𝑠 > 0, ℎ > 0, and the clock skew is zero. Find the minimum value of 𝑇𝑇𝑝𝑝 that does not 
lead to setup-time violations. 

From the inequality above, the minimum value of 𝑇𝑇𝑝𝑝 is 𝑑𝑑
𝑝𝑝

+ 𝑐𝑐 + 𝑠𝑠. 

(3) If 𝑐𝑐 = 0, 𝑠𝑠 = 0, ℎ = 0, we should always increase 𝑝𝑝 to reduce the execution time (True / False). 

In this case, 𝑇𝑇𝑝𝑝 = 𝑑𝑑
𝑝𝑝
, so the execution time is 𝑑𝑑

𝑝𝑝
∙ (𝑁𝑁 + 𝑝𝑝 − 1) = 𝑑𝑑 + 𝑑𝑑(𝑁𝑁−1)

𝑝𝑝
, so we should increase 𝑝𝑝 as 

much as we can. 

(4) If 𝑐𝑐 > 0, 𝑠𝑠 = 0, ℎ = 0, we should always increase 𝑝𝑝 to reduce the execution time (True / False). 

𝑇𝑇𝑝𝑝 = 𝑑𝑑
𝑝𝑝

+ 𝑐𝑐, so the execution time is �𝑑𝑑
𝑝𝑝

+ 𝑐𝑐� ∙ (𝑁𝑁 + 𝑝𝑝 − 1) = 𝑑𝑑 + 𝑑𝑑(𝑁𝑁−1)
𝑝𝑝

+ 𝑐𝑐(𝑁𝑁 − 1) + 𝑐𝑐𝑐𝑐. Thus, 𝑝𝑝 has a 

certain optimal value. (If you want to compute, you can. From −𝑑𝑑(𝑁𝑁−1)
𝑝𝑝2

+ 𝑐𝑐 = 0, we get 𝑝𝑝 = �𝑑𝑑(𝑁𝑁−1)
𝑐𝑐

) 

(5) If 𝑐𝑐 = 0, 𝑠𝑠 > 0, ℎ = 0, we should always increase 𝑝𝑝 to reduce the execution time (True / False). 



𝑇𝑇𝑝𝑝 = 𝑑𝑑
𝑝𝑝

+ 𝑠𝑠, which is similar to case (2). 

(6) If 𝑐𝑐 = 0, 𝑠𝑠 = 0, ℎ > 0, we should always increase 𝑝𝑝 to reduce the execution time (True / False). 

In this case, 𝑇𝑇𝑝𝑝 = 𝑑𝑑
𝑝𝑝
. However, since ℎ ≤ 𝑑𝑑

𝑝𝑝
, 𝑝𝑝 cannot be greater than 𝑑𝑑

ℎ
. 

 


