
EE466

VLSI Design

Final Exam

Dec. 12, 2018. (3:10pm – 5:10pm)

Instructor: Dae Hyun Kim (daehyun@eecs.wsu.edu)

 Name:

 WSU ID:

Problem Points
1 20
2 10
3 10
4 20
5 10
6 10
7 40
8 50

Total 170

* Allowed: Textbooks, cheat sheets, class notes, notebooks, calculators, watches, electronic devices.

* Not allowed: Chat apps.

mailto:daehyun@eecs.wsu.edu

Problem #1 (Sequential Logic, 20 points)

Schematic A below shows an explicit-pulsed D flip-flop. The signal strength of input 𝐷𝐷 is
unknown (e.g., someone designed a circuit and its output is connected to input 𝐷𝐷).

<Schematic A>

Since we have no clue on the strength of input 𝐷𝐷, we suggest the following D-F/F design. We
can properly size the two inverters in the dotted rectangle.

<Schematic B>

Question: Compare Schematic A and Schematic B (quantitatively and/or qualitatively) in terms
of 1) setup time constraint, 2) hold time constraint, 3) clock-to-Q delay, and 4) output slew
(∆𝑉𝑉𝑄𝑄�/∆𝑡𝑡) where 𝑉𝑉𝑄𝑄� is the voltage at the output node 𝑄𝑄�.

1) Setup time constraint: 𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,𝐴𝐴 < > = 𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,𝐵𝐵
The input of the transmission gate should be stable for 𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 before a clock rising edge.
Thus, 𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠,𝐴𝐴 = 𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠. For Schematic B, the input D should be stable for 𝑡𝑡𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 + 2𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖
before a clock rising edge (𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖 is the delay of an inverter).

2) Hold time constraint: 𝑡𝑡ℎ𝑜𝑜𝑜𝑜𝑜𝑜,𝐴𝐴 < > = 𝑡𝑡ℎ𝑜𝑜𝑜𝑜𝑜𝑜,𝐵𝐵
The input of the transmission gate should be stage for 𝑡𝑡ℎ𝑜𝑜𝑜𝑜𝑜𝑜 after a clock rising edge.
Thus, 𝑡𝑡ℎ𝑜𝑜𝑜𝑜𝑜𝑜,𝐴𝐴 = 𝑡𝑡ℎ𝑜𝑜𝑜𝑜𝑜𝑜. For Schematic B, a change at input D does not immediately lead to
a change at the input value of the transmission gate. Thus, 𝑡𝑡ℎ𝑜𝑜𝑜𝑜𝑜𝑜,𝐵𝐵 = 𝑡𝑡ℎ𝑜𝑜𝑜𝑜𝑜𝑜 − 2𝑡𝑡𝑖𝑖𝑖𝑖𝑖𝑖.

3) Clock-to-Q delay: 𝑡𝑡𝐶𝐶−𝑄𝑄,𝐴𝐴 < > = 𝑡𝑡𝐶𝐶−𝑄𝑄,𝐵𝐵

It depends on the strength of input D. If the driver of input D in Schematic A is weaker
than that in Schematic B, 𝑡𝑡𝐶𝐶−𝑄𝑄,𝐴𝐴 > 𝑡𝑡𝐶𝐶−𝑄𝑄,𝐵𝐵 will hold. If the driver of input D in Schematic
A is stronger than that in Schematic B, 𝑡𝑡𝐶𝐶−𝑄𝑄,𝐴𝐴 < 𝑡𝑡𝐶𝐶−𝑄𝑄,𝐵𝐵 will hold.

4) Output slew: 𝑠𝑠𝐴𝐴 < > = 𝑠𝑠𝐵𝐵
For the same reason as the answer for 3), the output slew is dependent on the strength of
the driver of input D.

Problem #2 (DC Analysis of a Domino Logic, 10 points)

The left figure shows a domino-logic-based buffer design and the right figure shows a DC curve
of the inverter in the schematic. 𝜇𝜇𝑛𝑛 = 2𝜇𝜇𝑝𝑝. 𝑤𝑤: Transistor minimum width.

Draw (rough sketches will be accepted) three DC curves (x-axis: 𝑉𝑉𝐴𝐴, y-axis: 𝑉𝑉𝐹𝐹) for the buffer for

1) 𝑤𝑤𝑝𝑝 = 𝑤𝑤𝑛𝑛 = 𝑤𝑤

2) 𝑤𝑤𝑝𝑝 = 2𝑤𝑤,𝑤𝑤𝑛𝑛 = 𝑤𝑤

3) 𝑤𝑤𝑝𝑝 = 𝑤𝑤,𝑤𝑤𝑛𝑛 = 2𝑤𝑤

𝑉𝑉𝑖𝑖𝑖𝑖

𝑉𝑉𝑜𝑜𝑠𝑠𝑠𝑠

1𝑉𝑉

1𝑉𝑉

1) 2)3)

Problem #3 (Sequential Logic, 10 points)

The following shows a schematic of a positive-edge triggered D-F/F.

Describe how you can estimate the hold time constraint of the F/F above. (Hold time constraint:
input 𝐷𝐷 should be stable (should not change) for some time after a clock rising edge.)

Input D should be stable until the output of the third inverter in the inverter chain becomes 0
after each clock rising edge. Thus, the hold time constraint is approximately 3∆𝑖𝑖𝑖𝑖𝑖𝑖 where ∆𝑖𝑖𝑖𝑖𝑖𝑖 is
the delay of an inverter.

Problem #4 (Carry Select Adder, 20 points)

The following shows a schematic of a 2k-bit adder designed using k-bit carry select adders. The
delay of a k-bit adder is 𝑘𝑘∆𝐹𝐹𝐹𝐹, the delay of a k-bit MUX is 𝑘𝑘∆𝑀𝑀, and the delay of a two-input
AND (or OR) gate is ∆𝑀𝑀.

1) We are supposed to design an N-bit adder using carry select adders (# groups: 𝑁𝑁
𝑘𝑘

). Find 𝑘𝑘
minimizing the delay of the N-bit adder (express the optimal k as a function of N, ∆𝑀𝑀, and ∆𝐹𝐹𝐹𝐹).
Notice that the worst-case delay occurs at 𝐶𝐶𝑁𝑁 (the final carry out) or 𝑆𝑆𝑁𝑁−1:0 (the final sum).

𝜏𝜏 = 𝑘𝑘∆𝐹𝐹𝐹𝐹 + �
𝑁𝑁
𝑘𝑘
− 2� ∙ 2∆𝑀𝑀 + 𝑘𝑘∆𝑀𝑀

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= ∆𝐹𝐹𝐹𝐹 −
2𝑁𝑁∆𝑀𝑀
𝑘𝑘2

+ ∆𝑀𝑀= 0

∴ 𝑘𝑘 = �
2𝑁𝑁∆𝑀𝑀

∆𝐹𝐹𝐹𝐹 + ∆𝑀𝑀

2) Now, the k-bit adders are designed using conditional sum adders, so the delay of a k-bit adder
is ∆𝑀𝑀 ∙ ln 𝑘𝑘 instead of 𝑘𝑘∆𝐹𝐹𝐹𝐹. Find 𝑘𝑘 minimizing the delay of the new N-bit adder (express the
optimal k as a function of N and ∆𝑀𝑀).

𝜏𝜏 = ∆𝑀𝑀 ∙ ln 𝑘𝑘 + �
𝑁𝑁
𝑘𝑘
− 2� ∙ 2∆𝑀𝑀 + 𝑘𝑘∆𝑀𝑀

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

=
∆𝑀𝑀
𝑘𝑘
−

2𝑁𝑁∆𝑀𝑀
𝑘𝑘2

+ ∆𝑀𝑀= 0

∴ 𝑘𝑘 =
−1 + √1 + 8𝑁𝑁

2

Problem #5 (Carry Skip Adder, 10 points)

The following diagram shows a 16-bit carry-skip adder designed using 4-bit adders.

To improve the speed of the carry-skip adder, we replace the 4-bit adders (4-bit blocks designed
using 4-bit ripple-carry adders) by 4-bit conditional sum adders. The delay of each multiplexer
step in the conditional sum adders is ∆𝑀𝑀 (so, if all the operands are available at time 0, the delay
of a 4-bit conditional sum adder is 3∆𝑀𝑀.) The delay of each 2:1 MUX in the schematic above is
∆𝑀𝑀. The delay of each 𝑝𝑝𝑖𝑖:𝑖𝑖−3 is 2∆𝑀𝑀. Calculate the delay of the new 16-bit carry-skip adder.

Delay of the carry-out of any 4-bit adder block = 3∆𝑀𝑀

Delay of any 𝑝𝑝𝑖𝑖+3:𝑖𝑖 = 2∆𝑀𝑀

Delay of 𝑐𝑐4 = 𝑀𝑀𝑀𝑀𝑀𝑀(3∆𝑀𝑀, 2∆𝑀𝑀) + ∆𝑀𝑀= 4∆𝑀𝑀

Delay of 𝑐𝑐8 = 4∆𝑀𝑀 + ∆𝑀𝑀= 5∆𝑀𝑀

Delay of 𝑐𝑐12 = 5∆𝑀𝑀 + ∆𝑀𝑀= 6∆𝑀𝑀

Delay of 𝑐𝑐16 = 6∆𝑀𝑀 + ∆𝑀𝑀= 7∆𝑀𝑀

Delay of 𝑠𝑠15:12 = 6∆𝑀𝑀 + ∆𝑀𝑀= 7∆𝑀𝑀

Thus, the total delay is 7∆𝑀𝑀.

Problem #6 (Carry Skip Adder, 10 points)

To radically improve the delay of a carry-skip adder, we design an N-bit carry-skip adder as
follows:

We design the k-bit adder blocks using k-bit conditional sum adders where 𝑘𝑘 is 2𝑚𝑚𝑖𝑖 (𝑖𝑖 is an
integer greater than or equal to 0). We also design the group-propagation signal 𝑝𝑝𝑖𝑖:𝑗𝑗 using OR
gates hierarchically. The following shows the delays of the components:

• k-bit adder: (1 + ln 𝑘𝑘) ∙ ∆𝑀𝑀
• k-bit group-propagation signal 𝑝𝑝𝑖𝑖:𝑖𝑖−𝑘𝑘+1: (2 + ln 𝑘𝑘

4
) ∙ ∆𝑀𝑀

• 2-bit MUX: ∆𝑀𝑀

Find m (𝑚𝑚 ≥ 2) minimizing the total delay of an N-bit carry-skip adder designed using the new
architecture shown above.

Delay of the carry-out of the first 2-bit adder block = (1 + ln 2)∆𝑀𝑀

Delay of 𝑝𝑝1:0 = (2 + ln 0.5)∆𝑀𝑀= (2 − ln 2)∆𝑀𝑀

Delay of 𝑐𝑐2 = 𝑀𝑀𝑀𝑀𝑀𝑀�(1 + ln 2)∆𝑀𝑀, (2 + ln 0.5)∆𝑀𝑀� + ∆𝑀𝑀= (2 + ln 2)∆𝑀𝑀

Delay of the carry-out of the second 2m-bit adder block = (1 + ln 2𝑚𝑚)∆𝑀𝑀= (1 + ln 2 +
ln𝑚𝑚)∆𝑀𝑀

Delay of 𝑝𝑝2𝑚𝑚+1:2 = �2 + ln 2𝑚𝑚
4
� ∙ ∆𝑀𝑀= (2 − ln 2 + ln𝑚𝑚) ∙ ∆𝑀𝑀

Delay of 𝑐𝑐2𝑚𝑚+2 = 𝑀𝑀𝑀𝑀𝑀𝑀�(1 + ln 2 + ln𝑚𝑚)∆𝑀𝑀, (2 − ln 2 + ln𝑚𝑚) ∙ ∆𝑀𝑀� + ∆𝑀𝑀= (2 + ln 2 +
ln𝑚𝑚)∆𝑀𝑀

Delay of the carry-out of the third 2𝑚𝑚2-bit adder block = (1 + ln 2𝑚𝑚2)∆𝑀𝑀= (1 + ln 2 +
2 ln𝑚𝑚)∆𝑀𝑀

Delay of 𝑝𝑝2𝑚𝑚2+2𝑚𝑚+1:2𝑚𝑚+2 = �2 + ln 2𝑚𝑚2

4
� ∙ ∆𝑀𝑀= (2 − ln 2 + 2 ln𝑚𝑚) ∙ ∆𝑀𝑀

Delay of 𝑐𝑐2𝑚𝑚2+2𝑚𝑚+2 = 𝑀𝑀𝑀𝑀𝑀𝑀�(1 + ln 2 + 2 ln𝑚𝑚)∆𝑀𝑀, (2 − ln 2 + 2ln𝑚𝑚) ∙ ∆𝑀𝑀� + ∆𝑀𝑀= (2 +
ln 2 + 2 ln𝑚𝑚)∆𝑀𝑀

...

Delay of 𝑐𝑐𝑁𝑁 = (2 + ln 2 + 𝑥𝑥 ln𝑚𝑚)∆𝑀𝑀 where 𝑥𝑥 satisfies

2 + 2𝑚𝑚 + ⋯+ 2𝑚𝑚𝑥𝑥 = 𝑁𝑁

2 + 2𝑚𝑚 + ⋯+ 2𝑚𝑚𝑥𝑥 =
2(𝑚𝑚𝑥𝑥+1 − 1)

𝑚𝑚 − 1
= 𝑁𝑁

𝑥𝑥 =
ln �1 + 𝑁𝑁(𝑚𝑚− 1)

2 �

ln𝑚𝑚
− 1

Thus, the delay of

𝑐𝑐𝑁𝑁 = �2 + ln 2 + ln �1 + 𝑁𝑁(𝑚𝑚−1)
2

� − ln𝑚𝑚�∆𝑀𝑀= �2 + ln 2 + ln �𝑁𝑁𝑁𝑁−𝑁𝑁+2
2𝑚𝑚

��∆𝑀𝑀

(The MSB sum has the same delay.)

To minimize the delay of 𝑐𝑐𝑁𝑁, m=2.

Problem #7 (Prefix Adder, 40 points)

Use the following delay values:

• AND, OR, XOR: ∆
• Two-level (sum-of-product) logic: 2∆
• 𝑔𝑔𝑖𝑖 = 𝑎𝑎𝑖𝑖 ∙ 𝑏𝑏𝑖𝑖, 𝑝𝑝𝑖𝑖 = 𝑎𝑎𝑖𝑖 ⊕ 𝑏𝑏𝑖𝑖

We are designing a 1024-bit Kogge-Stone adder.

1) Represent 𝑠𝑠999 hierarchically using group-generated and group-propagated carries (𝑔𝑔𝑖𝑖:𝑘𝑘, 𝑝𝑝𝑖𝑖:𝑘𝑘)
and 𝑐𝑐0 (primary carry-in), then compute the delay to compute 𝑠𝑠999 assuming all the primary input
signals are available at time 0 (10 points).

𝑠𝑠999 = 𝑝𝑝999 ⊕ 𝑐𝑐999

𝑐𝑐999 = 𝑔𝑔998:0 + 𝑝𝑝998:0 ⋅ 𝑐𝑐0

𝑔𝑔998:0 = 𝑔𝑔998:487 + 𝑝𝑝998:487 ⋅ 𝑔𝑔486:0

𝑔𝑔998:487 = 𝑔𝑔998:743 + 𝑝𝑝998:743 ⋅ 𝑔𝑔742:487

𝑔𝑔998:743 = 𝑔𝑔998:871 + 𝑝𝑝998:871 ⋅ 𝑔𝑔870:743

𝑔𝑔998:871 = 𝑔𝑔998:935 + 𝑝𝑝998:935 ⋅ 𝑔𝑔934:871

𝑔𝑔998:935 = 𝑔𝑔998:967 + 𝑝𝑝998:967 ⋅ 𝑔𝑔966:935

𝑔𝑔998:967 = 𝑔𝑔998:983 + 𝑝𝑝998:983 ⋅ 𝑔𝑔982:967

𝑔𝑔998:983 = 𝑔𝑔998:991 + 𝑝𝑝998:991 ⋅ 𝑔𝑔990:983

𝑔𝑔998:991 = 𝑔𝑔998:995 + 𝑝𝑝998:995 ⋅ 𝑔𝑔994:991

𝑔𝑔998:995 = 𝑔𝑔998:997 + 𝑝𝑝998:997 ⋅ 𝑔𝑔996:995

𝑔𝑔998:997 = 𝑔𝑔998 + 𝑝𝑝998 ⋅ 𝑔𝑔997

Delay = ∆ + 2∆ + 2∆ + 2∆ + 2∆ + 2∆ + 2∆ + 2∆ + 2∆ + 2∆ + 2∆ + 2∆ + ∆= 24∆

2) Represent 𝑠𝑠768 hierarchically using group-generated and group-propagated carries (𝑔𝑔𝑖𝑖:𝑘𝑘, 𝑝𝑝𝑖𝑖:𝑘𝑘)
and 𝑐𝑐0 (primary carry-in), then compute the delay to compute 𝑠𝑠768 assuming all the primary
input signals are available at time 0 (10 points).

𝑠𝑠768 = 𝑝𝑝768 ⊕ 𝑐𝑐768

𝑐𝑐768 = 𝑔𝑔767:0 + 𝑝𝑝767:0 ⋅ 𝑐𝑐0

𝑔𝑔767:0 = 𝑔𝑔767:256 + 𝑝𝑝767:256 ⋅ 𝑔𝑔255:0

𝑔𝑔767:256 = 𝑔𝑔767:512 + 𝑝𝑝767:512 ⋅ 𝑔𝑔511:256

𝑔𝑔767:512 = 𝑔𝑔767:640 + 𝑝𝑝767:640 ⋅ 𝑔𝑔639:512

𝑔𝑔767:640 = 𝑔𝑔767:704 + 𝑝𝑝767:704 ⋅ 𝑔𝑔703:640

𝑔𝑔767:704 = 𝑔𝑔767:736 + 𝑝𝑝767:736 ⋅ 𝑔𝑔735:704

𝑔𝑔767:736 = 𝑔𝑔767:752 + 𝑝𝑝767:752 ⋅ 𝑔𝑔751:736

𝑔𝑔767:752 = 𝑔𝑔767:760 + 𝑝𝑝767:760 ⋅ 𝑔𝑔759:752

𝑔𝑔767:760 = 𝑔𝑔767:764 + 𝑝𝑝767:764 ⋅ 𝑔𝑔763:760

𝑔𝑔767:764 = 𝑔𝑔767:766 + 𝑝𝑝767:766 ⋅ 𝑔𝑔765:764

𝑔𝑔767:766 = 𝑔𝑔767 + 𝑝𝑝767 ⋅ 𝑔𝑔766

Delay = ∆ + 2∆ + 2∆ + 2∆ + 2∆ + 2∆ + 2∆ + 2∆ + 2∆ + 2∆ + 2∆ + 2∆ + ∆= 24∆

3) Calculate the total gate area to build the 1024-bit Kogge-Stone adder. Use the following area
values. Notice that you should generate all sum (𝑠𝑠1023:0) and carry-out (𝑐𝑐1024) signals (10
points).

• Two-input AND, OR gate: 𝑘𝑘
• Two-input XOR: 4𝑘𝑘
• 𝑔𝑔𝑖𝑖 = 𝑎𝑎𝑖𝑖 ∙ 𝑏𝑏𝑖𝑖, 𝑝𝑝𝑖𝑖 = 𝑎𝑎𝑖𝑖 ⊕ 𝑏𝑏𝑖𝑖

For position 𝑗𝑗, 𝑠𝑠𝑗𝑗 = 𝑝𝑝𝑗𝑗⨁𝑐𝑐𝑗𝑗, so we need an XOR for each 𝑠𝑠𝑗𝑗. (1024*4k)

For position 𝑗𝑗, we should generate 𝑔𝑔𝑗𝑗 and 𝑝𝑝𝑗𝑗, so we need an AND and an XOR for each 𝑗𝑗.
(1024*5k)

A unit merging 𝑔𝑔𝑖𝑖 , 𝑝𝑝𝑖𝑖,𝑔𝑔𝑗𝑗 , 𝑝𝑝𝑗𝑗 needs one OR and two AND gates.

Now, let’s count how many those units we need.

Level 1: 𝑔𝑔,𝑝𝑝1023:1022, … ,𝑔𝑔, 𝑝𝑝1:0 => 1023

Level 2: 𝑔𝑔,𝑝𝑝1023:1020, … ,𝑔𝑔, 𝑝𝑝2:0 => 1022

Level 3: 𝑔𝑔,𝑝𝑝1023:1016, … ,𝑔𝑔, 𝑝𝑝4:0 => 1020

Level 4: 𝑔𝑔,𝑝𝑝1023:1008, … ,𝑔𝑔, 𝑝𝑝8:0 => 1016

Level 5: 𝑔𝑔,𝑝𝑝1023:992, … ,𝑔𝑔,𝑝𝑝16:0 => 1008

Level 6: 𝑔𝑔,𝑝𝑝1023:960, … ,𝑔𝑔, 𝑝𝑝32:0 => 992

Level 7: 𝑔𝑔,𝑝𝑝1023:896, ..., 𝑔𝑔,𝑝𝑝64:0 => 960

Level 8: 𝑔𝑔,𝑝𝑝1023:768, … ,𝑔𝑔, 𝑝𝑝128:0 => 896

Level 9: 𝑔𝑔,𝑝𝑝1023:512, … ,𝑔𝑔, 𝑝𝑝256:0 => 768

Level 10: 𝑔𝑔,𝑝𝑝1023:0, … ,𝑔𝑔, 𝑝𝑝512:0 => 512

so we need 9217 merging units. (9217*3k=27651k)

𝑐𝑐𝑗𝑗 = 𝑔𝑔𝑗𝑗−1:0 + 𝑝𝑝𝑗𝑗−1:0 ⋅ 𝑐𝑐0, so we need an AND and an OR to generate 𝑐𝑐𝑗𝑗. (1024*2k)

Thus, the total area = 1024*4k + 1024*5k + 27651k + 1024*2k = 38,915k

4) When we designed a Kogge-Stone adder, we used an XOR gate to calculate 𝑝𝑝𝑖𝑖 = 𝑎𝑎𝑖𝑖 ⊕ 𝑏𝑏𝑖𝑖.
Prove that we can also use 𝑎𝑎𝑖𝑖 + 𝑏𝑏𝑖𝑖 (+ is an OR operation) for 𝑝𝑝𝑖𝑖, i.e., prove that replacing
𝑝𝑝𝑖𝑖 = 𝑎𝑎𝑖𝑖 ⊕ 𝑏𝑏𝑖𝑖 by 𝑝𝑝𝑖𝑖 = 𝑎𝑎𝑖𝑖 + 𝑏𝑏𝑖𝑖 does not change the final sum and carry-out values. (10 points).

The only difference between 𝑎𝑎𝑖𝑖 + 𝑏𝑏𝑖𝑖 and 𝑎𝑎𝑖𝑖⨁𝑏𝑏𝑖𝑖 is when both 𝑎𝑎𝑖𝑖 and 𝑏𝑏𝑖𝑖 are 1. For position 𝑖𝑖, the
carry-out is 𝑐𝑐𝑖𝑖 = 𝑔𝑔𝑖𝑖 + 𝑝𝑝𝑖𝑖𝑐𝑐𝑖𝑖−1. If the OR is used for 𝑝𝑝𝑖𝑖, 𝑐𝑐𝑖𝑖 = 1 + 𝑐𝑐𝑖𝑖−1 = 1 if both 𝑎𝑎𝑖𝑖 and 𝑏𝑏𝑖𝑖 are 1.
If the XOR is used for 𝑝𝑝𝑖𝑖, 𝑐𝑐𝑖𝑖 = 1 + 0 = 1. Thus, they have the same carry out value. Thus, the
replacement does not change the final sum and carry-out values.

Problem #8 (Carry Look-Ahead Adder, 50 points)

The max. fanout is 4. Use the following delay values:

• AND, OR, XOR: ∆
• Two-level (sum-of-product) logic: 2∆
• 𝑔𝑔𝑖𝑖 = 𝑎𝑎𝑖𝑖 ∙ 𝑏𝑏𝑖𝑖, 𝑝𝑝𝑖𝑖 = 𝑎𝑎𝑖𝑖 ⊕ 𝑏𝑏𝑖𝑖

We are designing a 1024-bit carry look-ahead adder.

1) Represent 𝑠𝑠999 hierarchically using group-generated and group-propagated carries (𝑔𝑔𝑖𝑖:𝑘𝑘, 𝑝𝑝𝑖𝑖:𝑘𝑘)
and 𝑐𝑐0 (primary carry-in), then compute the delay to compute 𝑠𝑠999 assuming all the primary input
signals are available at time 0 (10 points).

𝑠𝑠999 = 𝑝𝑝999⨁𝑐𝑐999

𝑐𝑐999 = 𝑔𝑔998 + 𝑝𝑝998 ⋅ 𝑔𝑔997 + 𝑝𝑝998 ⋅ 𝑝𝑝997 ⋅ 𝑔𝑔996 + 𝑝𝑝998 ⋅ 𝑝𝑝997 ⋅ 𝑝𝑝996 ⋅ 𝑐𝑐996

𝑐𝑐996 = 𝑔𝑔995:992 + 𝑝𝑝995:992 ⋅ 𝑐𝑐992

𝑐𝑐992 = 𝑔𝑔991:976 + 𝑝𝑝991:976 ⋅ 𝑔𝑔975:960 + 𝑝𝑝991:976 ⋅ 𝑝𝑝975:960 ⋅ 𝑐𝑐960

𝑐𝑐960 = 𝑔𝑔959:896 + 𝑝𝑝959:896 ⋅ 𝑔𝑔895:832 + 𝑝𝑝959:896 ⋅ 𝑝𝑝895:832 ⋅ 𝑔𝑔831:768 + 𝑝𝑝959:896 ⋅ 𝑝𝑝895:832 ⋅ 𝑝𝑝831:768
⋅ 𝑐𝑐768

𝑐𝑐768 = 𝑔𝑔767:512 + 𝑝𝑝767:512 ⋅ 𝑔𝑔511:256 + 𝑝𝑝767:512 ⋅ 𝑝𝑝511:256 ⋅ 𝑔𝑔255:0 + 𝑝𝑝767:512 ⋅ 𝑝𝑝511:256 ⋅ 𝑝𝑝255:0
⋅ 𝑐𝑐0

𝑔𝑔255:0 = 𝑔𝑔255:192 + 𝑝𝑝255:192 ⋅ 𝑔𝑔191:128 + 𝑝𝑝255:192 ⋅ 𝑝𝑝191:128 ⋅ 𝑔𝑔127:64 + 𝑝𝑝255:192 ⋅ 𝑝𝑝191:128 ⋅ 𝑝𝑝127:64
⋅ 𝑔𝑔63:0

𝑔𝑔63:0 = 𝑔𝑔63:48 + 𝑝𝑝63:48 ⋅ 𝑔𝑔47:32 + 𝑝𝑝63:48 ⋅ 𝑝𝑝47:32 ⋅ 𝑔𝑔31:16 + 𝑝𝑝63:48 ⋅ 𝑝𝑝47:32 ⋅ 𝑝𝑝31:16 ⋅ 𝑔𝑔15:0

𝑔𝑔15:0 = 𝑔𝑔15:12 + 𝑝𝑝15:12 ⋅ 𝑔𝑔11:8 + 𝑝𝑝15:12 ⋅ 𝑝𝑝11:8 ⋅ 𝑔𝑔7:4 + 𝑝𝑝15:12 ⋅ 𝑝𝑝11:8 ⋅ 𝑝𝑝7:4 ⋅ 𝑔𝑔3:0

𝑔𝑔3:0 = 𝑔𝑔3 + 𝑝𝑝3 ⋅ 𝑔𝑔2 + 𝑝𝑝3 ⋅ 𝑝𝑝2 ⋅ 𝑔𝑔1 + 𝑝𝑝3 ⋅ 𝑝𝑝2 ⋅ 𝑝𝑝1 ⋅ 𝑔𝑔0

Delay = ∆ + 2∆ + 2∆ + 2∆ + 2∆ + 2∆ + 2∆ + 2∆ + 2∆ + 2∆ + ∆= 20∆

2) Represent 𝑠𝑠768 hierarchically using group-generated and group-propagated carries (𝑔𝑔𝑖𝑖:𝑘𝑘, 𝑝𝑝𝑖𝑖:𝑘𝑘)
and 𝑐𝑐0 (primary carry-in), then compute the delay to compute 𝑠𝑠768 assuming all the primary
input signals are available at time 0 (10 points).

𝑠𝑠768 = 𝑝𝑝768⨁𝑐𝑐768

𝑐𝑐768 = 𝑔𝑔767:512 + 𝑝𝑝767:512 ⋅ 𝑔𝑔511:256 + 𝑝𝑝767:512 ⋅ 𝑝𝑝511:256 ⋅ 𝑔𝑔255:0 + 𝑝𝑝767:512 ⋅ 𝑝𝑝511:256 ⋅ 𝑝𝑝255:0
⋅ 𝑐𝑐0

𝑔𝑔255:0 = 𝑔𝑔255:192 + 𝑝𝑝255:192 ⋅ 𝑔𝑔191:128 + 𝑝𝑝255:192 ⋅ 𝑝𝑝191:128 ⋅ 𝑔𝑔127:64 + 𝑝𝑝255:192 ⋅ 𝑝𝑝191:128 ⋅ 𝑝𝑝127:64
⋅ 𝑔𝑔63:0

𝑔𝑔63:0 = 𝑔𝑔63:48 + 𝑝𝑝63:48 ⋅ 𝑔𝑔47:32 + 𝑝𝑝63:48 ⋅ 𝑝𝑝47:32 ⋅ 𝑔𝑔31:16 + 𝑝𝑝63:48 ⋅ 𝑝𝑝47:32 ⋅ 𝑝𝑝31:16 ⋅ 𝑔𝑔15:0

𝑔𝑔15:0 = 𝑔𝑔15:12 + 𝑝𝑝15:12 ⋅ 𝑔𝑔11:8 + 𝑝𝑝15:12 ⋅ 𝑝𝑝11:8 ⋅ 𝑔𝑔7:4 + 𝑝𝑝15:12 ⋅ 𝑝𝑝11:8 ⋅ 𝑝𝑝7:4 ⋅ 𝑔𝑔3:0

𝑔𝑔3:0 = 𝑔𝑔3 + 𝑝𝑝3 ⋅ 𝑔𝑔2 + 𝑝𝑝3 ⋅ 𝑝𝑝2 ⋅ 𝑔𝑔1 + 𝑝𝑝3 ⋅ 𝑝𝑝2 ⋅ 𝑝𝑝1 ⋅ 𝑔𝑔0

Delay = ∆ + 5 ∗ (2∆) + ∆= 12∆

3) Calculate the total gate area to build the 1024-bit carry look-ahead adder. Use the following
area values. Notice that you should generate all sum (𝑠𝑠1023:0) and carry-out (𝑐𝑐1024) signals (20
points).

• Two-input AND, OR gate: 𝑘𝑘
• Three-input AND, OR gate: 2𝑘𝑘
• Four-input AND, OR gate: 3𝑘𝑘
• Two-input XOR: 4𝑘𝑘
• 𝑔𝑔𝑖𝑖 = 𝑎𝑎𝑖𝑖 ∙ 𝑏𝑏𝑖𝑖, 𝑝𝑝𝑖𝑖 = 𝑎𝑎𝑖𝑖 ⊕ 𝑏𝑏𝑖𝑖
• For a carry look-ahead unit for 𝑎𝑎𝑖𝑖+3:𝑖𝑖 , 𝑏𝑏𝑖𝑖+3:𝑖𝑖 , 𝑐𝑐𝑖𝑖, use the following formulae:

o 𝑐𝑐𝑖𝑖+1 = 𝑔𝑔𝑖𝑖 + 𝑝𝑝𝑖𝑖 ⋅ 𝑐𝑐𝑖𝑖 (for this, you need a two-input OR and a two-input AND)
o 𝑐𝑐𝑖𝑖+2 = 𝑔𝑔𝑖𝑖+1 + 𝑝𝑝𝑖𝑖+1 ⋅ 𝑔𝑔𝑖𝑖 + 𝑝𝑝𝑖𝑖+1 ⋅ 𝑝𝑝𝑖𝑖 ⋅ 𝑐𝑐𝑖𝑖 (for this, you need a three-input AND, a

two-input AND, a three-input OR)
o 𝑐𝑐𝑖𝑖+3 = 𝑔𝑔𝑖𝑖+2 + 𝑝𝑝𝑖𝑖+2 ⋅ 𝑔𝑔𝑖𝑖+1 + 𝑝𝑝𝑖𝑖+2 ⋅ 𝑝𝑝𝑖𝑖+1 ⋅ 𝑔𝑔𝑖𝑖 + 𝑝𝑝𝑖𝑖+2 ⋅ 𝑝𝑝𝑖𝑖+1 ⋅ 𝑝𝑝𝑖𝑖 ⋅ 𝑐𝑐𝑖𝑖 (for this, you

need a four-input AND, three-input AND, a two-input AND, a four-input OR)
• For a group carry look-ahead unit for 𝑔𝑔𝑖𝑖+3:𝑖𝑖 ,𝑝𝑝𝑖𝑖+3:𝑖𝑖 , 𝑐𝑐𝑖𝑖, use the following formulae:

o 𝑔𝑔′ (group generation) = 𝑔𝑔𝑖𝑖+3 + 𝑝𝑝𝑖𝑖+3 ⋅ 𝑔𝑔𝑖𝑖+2 + 𝑝𝑝𝑖𝑖+3 ⋅ 𝑝𝑝𝑖𝑖+2 ⋅ 𝑔𝑔𝑖𝑖+1 + 𝑝𝑝𝑖𝑖+3 ⋅ 𝑝𝑝𝑖𝑖+2 ⋅
𝑝𝑝𝑖𝑖+1 ⋅ 𝑔𝑔𝑖𝑖 (for this, you need a two-input AND, a three-input AND, a four-input
AND, a four-input OR)

o 𝑝𝑝′ (group propagation) = 𝑝𝑝𝑖𝑖+3 ⋅ 𝑝𝑝𝑖𝑖+2 ⋅ 𝑝𝑝𝑖𝑖+1 ⋅ 𝑝𝑝𝑖𝑖 (for this, you need a four-input
AND)

o 𝑐𝑐′ (group carry) = 𝑔𝑔′ + 𝑝𝑝′ ⋅ 𝑐𝑐𝑖𝑖 (for this, you need a two-input AND and a two-
input OR)

𝑔𝑔,𝑝𝑝𝑖𝑖 for each i: 1024*(k+4k)

𝑠𝑠𝑖𝑖 for each i: 1024*(4k)

Level-1 carry look-ahead unit: 2k for 𝑐𝑐𝑖𝑖+1, 5k for 𝑐𝑐𝑖𝑖+2, 9k for 𝑐𝑐𝑖𝑖+3, 9k for group 𝑔𝑔, 3k for group
𝑝𝑝, total 28k

Level-1 carry look-ahead units: 1024/4 = 256

For all the other carry look-ahead unit: 9k for group 𝑔𝑔, 3k for group 𝑝𝑝, and 2k for 𝑐𝑐′, total 14k.

Level-2 carry look-ahead units: 1024/16 = 64

Level-3 carry look-ahead units: 1024/64 = 16

Level-4 carry look-ahead units: 1024/256 = 4

Level-5 carry look-ahead units: 1024/1024 = 1

The total area = 1024*5k + 1024*4k + 256*28k + 85*14k = 17,574k

The max. fanout is 2. Use the following delay values:

• AND, OR, XOR: ∆
• Two-level (sum-of-product) logic: 2∆
• 𝑔𝑔𝑖𝑖 = 𝑎𝑎𝑖𝑖 ∙ 𝑏𝑏𝑖𝑖, 𝑝𝑝𝑖𝑖 = 𝑎𝑎𝑖𝑖 ⊕ 𝑏𝑏𝑖𝑖

We are designing a 1024-bit carry look-ahead adder.

4) Represent 𝑠𝑠999 hierarchically using group-generated and group-propagated carries (𝑔𝑔𝑖𝑖:𝑘𝑘, 𝑝𝑝𝑖𝑖:𝑘𝑘)
and 𝑐𝑐0 (primary carry-in), then compute the delay to compute 𝑠𝑠999 assuming all the primary input
signals are available at time 0 (10 points).

𝑠𝑠999 = 𝑝𝑝999⨁𝑐𝑐999

𝑐𝑐999 = 𝑔𝑔998 + 𝑝𝑝998 ⋅ 𝑐𝑐998 (2𝑋𝑋)

𝑐𝑐998 = 𝑔𝑔997:996 + 𝑝𝑝997:996 ⋅ 𝑐𝑐996 (4𝑋𝑋)

𝑐𝑐996 = 𝑔𝑔995:992 + 𝑝𝑝995:992 ⋅ 𝑐𝑐992 (8𝑋𝑋)

𝑐𝑐992 = 𝑔𝑔991:960 + 𝑝𝑝991:960 ⋅ 𝑐𝑐960 (64𝑋𝑋)

𝑐𝑐960 = 𝑔𝑔959:896 + 𝑝𝑝959:896 ⋅ 𝑐𝑐896 (128𝑋𝑋)

𝑐𝑐896 = 𝑔𝑔895:768 + 𝑝𝑝895:768 ⋅ 𝑐𝑐768 (256𝑋𝑋)

𝑐𝑐768 = 𝑔𝑔767:512 + 𝑝𝑝767:512 ⋅ 𝑐𝑐512 (512𝑋𝑋)

𝑐𝑐512 = 𝑔𝑔511:0 + 𝑝𝑝511:0 ⋅ 𝑐𝑐0 (1024𝑋𝑋)

𝑔𝑔511:0 = 𝑔𝑔511:256 + 𝑝𝑝511:256 ⋅ 𝑔𝑔255:0

𝑔𝑔255:0 = 𝑔𝑔255:128 + 𝑝𝑝255:128 ⋅ 𝑔𝑔127:0

𝑔𝑔127:0 = 𝑔𝑔127:64 + 𝑝𝑝127:64 ⋅ 𝑔𝑔63:0

𝑔𝑔63:0 = 𝑔𝑔63:32 + 𝑝𝑝63:32 ⋅ 𝑔𝑔31:0

𝑔𝑔31:0 = 𝑔𝑔31:16 + 𝑝𝑝31:16 ⋅ 𝑔𝑔15:0

𝑔𝑔15:0 = 𝑔𝑔15:8 + 𝑝𝑝15:8 ⋅ 𝑔𝑔7:0

𝑔𝑔7:0 = 𝑔𝑔7:4 + 𝑝𝑝7:4 ⋅ 𝑔𝑔3:0

𝑔𝑔3:0 = 𝑔𝑔3:2 + 𝑝𝑝3:2 ⋅ 𝑔𝑔1:0

𝑔𝑔1:0 = 𝑔𝑔1 + 𝑝𝑝1 ⋅ 𝑔𝑔0

Delay = ∆ + 17 ∗ (2∆) + ∆= 36∆

