EE466
VLSI Design

Final Exam
Dec. 12, 2018. (3:10pm — 5:10pm)

Instructor: Dae Hyun Kim (daehyun@eecs.wsu.edu)

Name:

WSU ID:

Problem Points
1 20
2 10
3 10
4 20
5 10
6 10
7 40
8 50
Total 170

* Allowed: Textbooks, cheat sheets, class notes, notebooks, calculators, watches, electronic devices.

* Not allowed: Chat apps.

mailto:daehyun@eecs.wsu.edu

Problem #1 (Sequential Logic, 20 points)

Schematic A below shows an explicit-pulsed D flip-flop. The signal strength of input D is
unknown (e.g., someone designed a circuit and its output is connected to input D).

1

D T t%j%@
o T D

<Schematic A>

Since we have no clue on the strength of input D, we suggest the following D-F/F design. We
can properly size the two inverters in the dotted rectangle.

CLK J—[>o—Do—[>o—Dll>y

<Schematic B>

Question: Compare Schematic A and Schematic B (quantitatively and/or qualitatively) in terms
of 1) setup time constraint, 2) hold time constraint, 3) clock-to-Q delay, and 4) output slew
(AVg/At) where Vj is the voltage at the output node Q.

1) Setup time constraint: tseryp 4 @> = tsetup,p
The input of the transmission gate should be stable for t,,.,,, before a clock rising edge.
Thus, tsetupa = tsetup- FOr Schematic B, the input D should be stable for tgery,, + 2ty
before a clock rising edge (t;,,,, is the delay of an inverter).

2) Hold time constraint: tyo04 <\>)= thowas
The input of the transmission gate should be stage for t;,,;4 after a clock rising edge.
Thus, thoiaa = thoia- FOr Schematic B, a change at input D does not immediately lead to
a change at the input value of the transmission gate. Thus, t,,1a 5 = thoia — 2tiny-

3) Clock-to-Qdelay: tc_pa < > = tc_gp

It depends on the strength of input D. If the driver of input D in Schematic A is weaker
than that in Schematic B, tc_q 4 > tc—_qp Will hold. If the driver of input D in Schematic

A is stronger than that in Schematic B, tc_g 4 < tc—q Will hold.

4) Outputslew: s, < > = sp
For the same reason as the answer for 3), the output slew is dependent on the strength of

the driver of input D.

Problem #2 (DC Analysis of a Domino Logic, 10 points)

The left figure shows a domino-logic-based buffer design and the right figure shows a DC curve
of the inverter in the schematic. p,, = 2u,,. w: Transistor minimum width.

VOHt

J’ 1v

CK—d Wp

:'_|>°_F 0.5V

0.5V
717 Inverter

Draw (rough sketches will be accepted) three DC curves (x-axis: V,, y-axis: V) for the buffer for
Dwy,=w, =w
2w, =2w,wy, = w

3) wp, = w,w, = 2w

Problem #3 (Sequential Logic, 10 points)

The following shows a schematic of a positive-edge triggered D-F/F.

< |

1

Describe how you can estimate the hold time constraint of the F/F above. (Hold time constraint:
input D should be stable (should not change) for some time after a clock rising edge.)

Input D should be stable until the output of the third inverter in the inverter chain becomes 0
after each clock rising edge. Thus, the hold time constraint is approximately 34,,,,, where A;,,,, is
the delay of an inverter.

Problem #4 (Carry Select Adder, 20 points)

The following shows a schematic of a 2k-bit adder designed using k-bit carry select adders. The
delay of a k-bit adder is kAg,, the delay of a k-bit MUX is kA,,, and the delay of a two-input
AND (or OR) gate is A,,.

Azk_l aes Ak sz_l e Bk

P

COzp—1
k-bit adder (kAr4) +«— 0
k-bit adder (kA — 1
(kAra) Ap—q .. A9 Br-1 .. By
Y h 4 4; {
COx—1
k-bit MUX (kAp) . k-bit adder (kAg,) — I,
Sop—1 o Sk Sk—1 .« So

CO2k-1

1) We are supposed to design an N-bit adder using carry select adders (# groups: %). Find k

minimizing the delay of the N-bit adder (express the optimal k as a function of N, A, and Ag,).
Notice that the worst-case delay occurs at Cy (the final carry out) or Sy _;., (the final sum).

N

dt 2NAy,
ak =T T

o | 2Ny

2) Now, the k-bit adders are designed using conditional sum adders, so the delay of a k-bit adder
is Ay - Ink instead of kAg,. Find k minimizing the delay of the new N-bit adder (express the
optimal k as a function of N and 4,,).

N

dt Ay 2NAy
dk ~ k k2

k_—1+\/1+8N
N 2

Problem #5 (Carry Skip Adder, 10 points)

The following diagram shows a 16-bit carry-skip adder designed using 4-bit adders.

Bis.12 A15|:12 Bitg Aiis B7.4 Az B30 Az
. . Co
4-bit block 4-bit block
c16{ 0 i !
1 : :
 Ppisaz P11

To improve the speed of the carry-skip adder, we replace the 4-bit adders (4-bit blocks designed
using 4-bit ripple-carry adders) by 4-bit conditional sum adders. The delay of each multiplexer
step in the conditional sum adders is Ay, (so, if all the operands are available at time 0, the delay
of a 4-bit conditional sum adder is 34,,.) The delay of each 2:1 MUX in the schematic above is
Ay . The delay of each p;.;_5 is 24,,. Calculate the delay of the new 16-bit carry-skip adder.

Delay of the carry-out of any 4-bit adder block = 34,
Delay of any p;,3.; = 2Ay

Delay of ¢, = MAX (3, 2Ay) + Ay= 44y,

Delay of cg = 4A,, + Ay = 57y

Delay of ¢;, = 5Ay + Ay = 6Ay,

Delay of c;4 = 67y + Ayy= 7Ay

Delay of s;5.15 = 67y + Ay= 7Ay

Thus, the total delay is 7A,.

Problem #6 (Carry Skip Adder, 10 points)

To radically improve the delay of a carry-skip adder, we design an N-bit carry-skip adder as
follows:

Ay r2m2 4 2me1:2m? +2m+2 Ao 2
2m=+2m+1:2m+2

Bymssam2e2met:2me+2me2 Bymziametame2 Bam+1:2 Azms1:2 Bl|:U All:U
C. [C2; C: C
. m+2m+2 . 2m+2 . 2 i 0
2m3-bit block 2m2-bit block 2m-bit block 2-bit block
1
1
:
L‘Z]‘!l"‘+2??lz+21'fl'.+ 0 1 0
'
1
1 1 *
1
1
:
| o - | - B S —— -
D2mE4+2m? +2m+1:2m2+2m+2 Pam?+2m+1:2m+2 Pam+1:2 P1.o

We design the k-bit adder blocks using k-bit conditional sum adders where k is 2m! (i is an
integer greater than or equal to 0). We also design the group-propagation signal p;.; using OR
gates hierarchically. The following shows the delays of the components:

o k-bitadder: (1+1Ink)-Ay
e k-bit group-propagation signal p;.;_x+1: (2 + In %) Ay
o 2-bit MUX: Ay,

Find m (m > 2) minimizing the total delay of an N-bit carry-skip adder designed using the new
architecture shown above.

Delay of the carry-out of the first 2-bit adder block = (1 + In 2)A,

Delay of ¢; = MAX((1 +In2)Ay, (2 +1n0.5)Ay) + Ay= (2 + In2)A,

Delay of the carry-out of the second 2m-bit adder block = (1 + In2m)Ay= (1 +1n2 +
Inm)Ay,

Delay Of p2m+1:2 = (2 + ln ZTm) - AM= (2 - 1n2 + ln m) - AM

Delay of c3miz = MAX((1+In2 +Inm)Ay,(2—In2 +Inm)-Ay) +Ay= (2 +In2 +
Inm)Ay,

Delay of the carry-out of the third 2m?2-bit adder block = (1 + In2m?)A,= (1 +1n2 +
2lnm)Ay

2
Delay of pyzszmsrzmez = (2+IMZ-) - Ay= (2= In2 + 2Inm) - Ay

Delay of cymz4amsz = MAX((1+1n2 + 2Inm)Ay, (2 —In2 + 2Inm) - Ay) + Ay= (2 +
In2 + 2Inm)Ay

Delay of ¢y = (2 + In2 + x Inm)A,, where x satisfies

2+2m+--+2m* =N

Z(mx+1_1)
2+2m+-+2m¥*=———=N
m—1
Nim-1
in(14+Nm=1
2
X = -1
Inm

Thus, the delay of
v =(2+m2+ I (1+722) —nm) A= (2+ In2 +In ())

(The MSB sum has the same delay.)

To minimize the delay of ¢y, m=2.

Problem #7 (Prefix Adder, 40 points)

Use the following delay values:

e AND, OR, XOR: A
e Two-level (sum-of-product) logic: 2A
* gi=a;"b,pi=a;, DD

We are designing a 1024-bit Kogge-Stone adder.

1) Represent sqq99 hierarchically using group-generated and group-propagated carries (g;.x Pi:x)
and ¢, (primary carry-in), then compute the delay to compute sq99 assuming all the primary input
signals are available at time 0 (10 points).

S999 = Pogg D Cgg9
C999 = YJ998:0 t D99s:0 * Co
9998:0 = J998:487 T Poog.a87 * J486:0
9998:487 = J998:743 t P998:743 * J742:487
9998:743 = Joos:871 t Poos:871 * I870:743
9998:871 = J998:935 t D998:935 * J934:871
9998:935 = J998:967 1 P998:967 * J966:935
9998:967 = J998:983 T P99g:083 * J982:967
9998:983 = J998:991 T P998:991 * 990:983
9998:991 = J998:995 T P998:995 * F994:991
9998:995 = J998:997 1 P998:997 * J996:995

9998:997 = Joog T Poog * 997

Delay = A+ 2A + 2A 4+ 2A 4+ 2A + 2A + 2A + 2A + 2A + 2A + 2A + 2A + A= 24A

2) Represent s,¢g hierarchically using group-generated and group-propagated carries (g;.x, Pi-x)
and ¢, (primary carry-in), then compute the delay to compute s,¢g assuming all the primary
input signals are available at time 0 (10 points).

S768 = D768 D C76s
C768 = 9767:0 T D767:0 " Co
9767:0 = 9767:256 T P767:256 * Y255:0
9767:256 = 9767:512 T P767:512 * J511:256
9767:512 = 9767:640 T D767:640 * U639:512
9767:640 = 9767:704 T D767:704 * 9703:640
9767:704 = 9767:736 T P767:736 * 9735:704
9767:736 = 9767:752 + D767:752 " 9751:736
9767:752 = 9767:760 T D767:760 * 9759:752
9767:760 = 9767:764 + D767:764 * 9763:760
9767:764 = 9767:766 + D767:766 * 9765:764

9767:766 = 9767 T D767 * 9766

Delay = A + 2A + 2A + 2A + 2A + 2A + 2A + 2A + 2A + 2A + 2A + 2A + A= 24A

3) Calculate the total gate area to build the 1024-bit Kogge-Stone adder. Use the following area
values. Notice that you should generate all sum (s;¢23.9) and carry-out (c;,4) signals (10
points).

e Two-input AND, OR gate: k
e Two-input XOR: 4k
* 9i=a;"bypi=a; DD

For position j, s; = p;@c;, so we need an XOR for each s;. (1024*4Kk)

For position j, we should generate g; and p;, so we need an AND and an XOR for each j.
(1024*5k)

A unit merging g;, p;, gj, pj needs one OR and two AND gates.
Now, let’s count how many those units we need.

Level 1: g,p1023:1022 -+» g P1.0 => 1023

Level 2: g, p1023:1020, -++» g, P2:0 => 1022

Level 3: g, p1023:1016) -++» 9, Pa:o => 1020

Level 4: g, p1023:1008 -, 9> Pg:0 => 1016

Level 5: g, p1023:992, -++» 9, P16:0 => 1008

Level 6: g, 1023960, -++» 9 P32:0 => 992

Level 7: g, p1023:896+ -+ 9, Pea:o = 960

Level 8: g, P1023:768 -+» 9, P128:0 = 896

Level 9: g, D1023:512) > > P256:0 => 768

Level 10: g, P1023:0,)) Ps12:0 => 512
so we need 9217 merging units. (9217*3k=27651k)
C; = gj—1:0 + Pj-1:0 * Co, SO We need an AND and an OR to generate c;. (1024*2k)

Thus, the total area = 1024*4k + 1024*5k + 27651k + 1024*2k = 38,915k

4) When we designed a Kogge-Stone adder, we used an XOR gate to calculate p; = a; @ b;.
Prove that we can also use a; + b; (+ is an OR operation) for p;, i.e., prove that replacing
pi = a; @D b; by p; = a; + b; does not change the final sum and carry-out values. (10 points).

The only difference between a; + b; and a;@®b; is when both a; and b; are 1. For position i, the
carry-outis ¢; = g; + p;ci—,. Ifthe OR is used for p;, c; = 1 + ¢;_, = 1 if both a; and b; are 1.
If the XOR is used for p;, c; = 1 + 0 = 1. Thus, they have the same carry out value. Thus, the
replacement does not change the final sum and carry-out values.

Problem #8 (Carry Look-Ahead Adder, 50 points)

The max. fanout is 4. Use the following delay values:

e AND, OR, XOR: A
e Two-level (sum-of-product) logic: 2A
* gi=a;"b,pi=a; DD

We are designing a 1024-bit carry look-ahead adder.

1) Represent sqq99 hierarchically using group-generated and group-propagated carries (g;.x Pi:x)
and ¢, (primary carry-in), then compute the delay to compute sq99 assuming all the primary input
signals are available at time 0 (10 points).

S999 = P99 Co99
C999 = Joog T Dogg * G997 T Poog " P997 * G996 + P9og * P997 " P9gs * Co96
C996 = J995:992 T P99s5:992 * C992
C992 = J991:976 T P991:976 * 975:960 T P991:976 * P975:960 * C960

€960 = J959:806 T P959:896 * J895:832 T P959:896 * P895:832 * I831:768 T P959:896 * P89s5:832 * P831:768
" C768

C768 = 9767:512 T P767:512 * I511:256 T P767:512 * P511:256 * 9255:0 T P767:512 * P511:256 * P255:0
. CO

9255:0 = 9255:192 T P255:192 * J191:128 T P255:192 * P191:128 * J127:64 T P255:192 * P191:128 * P127:64
*YJ63:0

963:0 = YJe63:48 T D63:48 " Ja7:32 T D63:48 " P47:32 * Y31:16 T P63:48 * Pa7:32 * P31:16 * J15:0
915:0 = 915:12 T P1s:12 * J11:8 T Pis:12 * P11:8 * 97:4 T P15:12 * P11:8 * P7:4 * 93:0
93.0 =93 tP3°92+P3°P2°91 tP3°P2"P1" Y0

Delay = A+ 2A 4+ 2A 4+ 2A 4+ 2A + 2A + 2A + 2A + 2A + 2A + A= 20A

2) Represent s,¢g hierarchically using group-generated and group-propagated carries (g;.x, Pi-x)
and ¢, (primary carry-in), then compute the delay to compute s, g assuming all the primary
input signals are available at time 0 (10 points).

S768 = P768DC768

C768 = 9767:512 T P767:512 * I511:256 T P767:512 * P511:256 * 9255:0 T P767:512 * P511:256 * P255:0
. CO

9255:0 = 9255:192 t P255:192 * J191:128 T P255:192 * P191:128 * J127:64 T P255:192 * P191:128 * P127:64
* J63:0

963:0 = Je3:48 T De3:48 - J47:32 T D63:48 * Pa7:32 " J31:16 T Pe3:48 * Pa7:32 * P31:16 * J15:0
915:0 = J15:12 T P15z G118 T P15z Pris * 7:4 T P1si12 * P1is * P74 G300
930 =93t P3 921t D3 D291 1tD3 DP2"P1" Yo
Delay = A+ 5 * (2A4) + A= 12A

3) Calculate the total gate area to build the 1024-bit carry look-ahead adder. Use the following
area values. Notice that you should generate all sum (s;4,3.0) and carry-out (c,¢,4) Signals (20
points).

e Two-input AND, OR gate: k
e Three-input AND, OR gate: 2k
e Four-input AND, OR gate: 3k
e Two-input XOR: 4k
* gi=a;"b,pi=a;, DD
e For a carry look-ahead unit for a;,s.;, b;+3.;, ¢;, use the following formulae:
O ¢Ciy1 = g; +p; - ¢ (for this, you need a two-input OR and a two-input AND)
O Ciy2 = Giv1 + Pit1 - gi + pis1 - pi - c; (for this, you need a three-input AND, a
two-input AND, a three-input OR)
O Ciyz = itz + Pivz " Gir1 + Pivz " Piv1 - Gi + Pivz - Piv1 - Pi - ¢ (for this, you
need a four-input AND, three-input AND, a two-input AND, a four-input OR)
e Foragroup carry look-ahead unit for g;,s.;, pi+3.i, Ci» Use the following formulae:
0 g’ (group generation) = giy3 + Dit3 * Gisz + Pir3 Pisz - Jir1 + Divs " Pisz
pi+1 - g; (for this, you need a two-input AND, a three-input AND, a four-input
AND, a four-input OR)
0 p' (group propagation) = p;,3 - Pi+2 - Pi+1 - P; (for this, you need a four-input
AND)
o ¢’ (groupcarry) = g' + p’ - ¢; (for this, you need a two-input AND and a two-
input OR)

g, p; for each i: 1024*(k+4Kk)
s; for each i: 1024*(4k)

Level-1 carry look-ahead unit: 2k for c;, 1, 5k for c;,,, 9k for c;, 3, 9k for group g, 3k for group
p, total 28k

Level-1 carry look-ahead units: 1024/4 = 256

For all the other carry look-ahead unit: 9k for group g, 3k for group p, and 2k for ¢’, total 14k.
Level-2 carry look-ahead units: 1024/16 = 64

Level-3 carry look-ahead units: 1024/64 = 16

Level-4 carry look-ahead units: 1024/256 = 4

Level-5 carry look-ahead units: 1024/1024 = 1

The total area = 1024*5k + 1024*4k + 256*28k + 85*14k = 17,574k

The max. fanout is 2. Use the following delay values:

e AND, OR, XOR: A
e Two-level (sum-of-product) logic: 2A
* gi=a;"b,pi=a; DD

We are designing a 1024-bit carry look-ahead adder.

4) Represent sqq99 hierarchically using group-generated and group-propagated carries (g;.x, Pi:x)
and ¢, (primary carry-in), then compute the delay to compute sq9 assuming all the primary input
signals are available at time 0 (10 points).

S999 = P9g9DCog9
C999 = Yoog + Poog * Coog (2X)
Co9g = Y997:996 T P997:996 * Co96 (4X)
C996 = Y995:992 T P99s5:992 * C992 (8X)
C992 = J991:960 T P991:960 * Coso (64X)
C960 = J959:896 T P959:896 * Cg96 (128X)
Cg96 = Jg9s:768 T Pgos.768 * C768 (256X)
C768 = 9767:512 T P767:512 * Cs12 (512X)
Cs512 = Ys11:0 T Ps11:0 * Co (1024X)
9s11:0 = Js11:256 T Ps11:256 * 9255:0
9255:0 = Y255:128 1 D255:128 * 127:0
9127:0 = 9127:64 T P127:64 " J63:0
963:0 = YJe3:32 T Pe63:32 * J31:0
931:0 = 931:16 T P31:16 " J15:0
915:0 = Y1s:8 T P15 970
97:0 = 97:.4 + P7:4 " G320
93:.0 = g3:2 T P32 " G100

91.0 =91 T P1° 9o

Delay = A + 17 = (2A) + A= 36A

