
EE466

VLSI Design

Final Exam

Dec. 13, 2019. (3:10pm – 5:10pm)

Instructor: Dae Hyun Kim (daehyun@eecs.wsu.edu)

 Name:

 WSU ID:

Problem Points
1 10
2 10
3 10
4 10
5 10
6 20
7 10
8 10
9 40

Total 130

* Allowed: Textbooks, cheat sheets, class notes, notebooks, calculators, watches, electronic devices.

* Not allowed: Chat apps.

mailto:daehyun@eecs.wsu.edu

Problem #1 (Sequential Logic, 10 points)

The left one is a positive-edge-triggered explicit-pulsed D flip-flop (epDFF). The right one is a
negative-edge-triggered epDFF.

Do the two FFs have the same hold-time constraint for D=0?

Do the two FFs have the same hold-time constraint for D=1?

Problem #2 (Domino Logic, 10 points)

The following shows a three-stage domino logic for 𝑌𝑌 = 𝑁𝑁1 ∙ 𝑁𝑁2 ∙ 𝑁𝑁3 (the inputs to the NFET
networks are not shown). The sizes of all the PFETs and the inverters are fixed (constants). All
the given timing constraints are also fixed.

Now, we merge the PFETs into a single PFET as follows:

1) Will it work? If no, explain why. If yes, can you compare the size of the PFET in the second
schematic and the sum of the sizes of the PFETs in the first schematic?

Now, let’s merge the NFETs into a single NFET as follows:

2) Will it work? If no, explain why. If yes, can you compare the size of the clock NFET in the
third schematic and the sum of the sizes of the clock NFETs in the first schematic?

Problem #3 (Sequential Logic, 10 points)

The following shows a schematic of a D-F/F. Estimate the hold time constraint of the F/F (for
example, “one inverter delay + one transmission gate delay”).

When the clock signal goes high, the transmission gate on the left side (TG1) is fully turned off
after four inverter delays. Once it is turned off, even if D changes, nothing happens at the output
node. Thus, the hold time constraint is “four inverter delay.”

Problem #4 (Carry Select Adder, 10 points)

The following shows a schematic of a 2k-bit carry select adder designed using k-bit parallel
adders. The delay of a k-bit adder is ∆𝐹𝐹𝐹𝐹 ∙ log2 𝑘𝑘, the delay of a k-bit MUX is ∆𝑀𝑀, and the delay
of a two-input AND (or OR) gate is ∆𝑀𝑀.

We are supposed to design an N-bit adder using carry select adders (# groups: 𝑁𝑁
𝑘𝑘

). Find 𝑘𝑘
minimizing the delay of the N-bit adder (express the optimal k as a function of N, ∆𝑀𝑀, and ∆𝐹𝐹𝐹𝐹).
Notice that the worst-case delay occurs at 𝐶𝐶𝑁𝑁 (the final carry out) or 𝑆𝑆𝑁𝑁−1:0 (the final sum). Just a

small math hint: log2 𝑘𝑘 = ln𝑘𝑘
ln2

, 𝑑𝑑(ln 𝑥𝑥)
𝑑𝑑𝑑𝑑

= 1
𝑥𝑥
.

𝜏𝜏 = ∆𝐹𝐹𝐹𝐹 ∙ log2 𝑘𝑘 + �
𝑁𝑁
𝑘𝑘
− 1� ∙ 2∆𝑀𝑀

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

=
∆𝐹𝐹𝐹𝐹
ln 2

∙
1
𝑘𝑘
−

2𝑁𝑁∆𝑀𝑀
𝑘𝑘2

= 0

∴ 𝑘𝑘 =
2𝑁𝑁∆𝑀𝑀 ln 2

∆𝐹𝐹𝐹𝐹

Problem #5 (Carry Select Adder, 10 points)

To radically improve the delay of a carry-select adder, we design an N-bit carry-select adder as
follows:

We design the k-bit adder using a k-bit parallel adder where 𝑘𝑘 is 2𝑚𝑚𝑖𝑖 (𝑖𝑖 is an integer greater than
or equal to 0).

The following shows the delays of the components:

• k-bit adder: ∆𝐹𝐹𝐹𝐹 ∙ log2 𝑘𝑘 = ∆𝐹𝐹𝐹𝐹 ∙ log2�2𝑚𝑚𝑖𝑖� = ∆𝐹𝐹𝐹𝐹 ∙ (1 + 𝑖𝑖 ∙ log2 𝑚𝑚)
• 𝑘𝑘-bit MUX: ∆𝑀𝑀
• ∆𝐹𝐹𝐹𝐹> 2 ∗ ∆𝑀𝑀

Express the delay of the last carry out 𝐶𝐶𝑁𝑁 using 𝑁𝑁, 𝑚𝑚, ∆𝐹𝐹𝐹𝐹, and ∆𝑀𝑀.

Delay of 𝐶𝐶2: 𝜏𝜏2 = ∆𝐹𝐹𝐹𝐹

Delay of the 2𝑚𝑚-bit adder: 𝑑𝑑2𝑚𝑚 = ∆𝐹𝐹𝐹𝐹 ∙ (1 + log2 𝑚𝑚)

Delay of 𝐶𝐶2𝑚𝑚+2: 𝜏𝜏2𝑚𝑚+2 = 𝑀𝑀𝑀𝑀𝑀𝑀(𝜏𝜏2,𝑑𝑑2𝑚𝑚) + 2∆𝑀𝑀= ∆𝐹𝐹𝐹𝐹 ∙ (1 + log2 𝑚𝑚) + 2∆𝑀𝑀

Delay of the 2m2-bit adder: 𝑑𝑑2𝑚𝑚′ = ∆𝐹𝐹𝐹𝐹 ∙ (1 + 2 log2 𝑚𝑚)

Delay of 𝐶𝐶2𝑚𝑚2+2𝑚𝑚+2: 𝜏𝜏2𝑚𝑚2+2𝑚𝑚+2 = 𝑀𝑀𝑀𝑀𝑀𝑀(𝜏𝜏2𝑚𝑚+2,𝑑𝑑2𝑚𝑚′) + 2∆𝑀𝑀= ∆𝐹𝐹𝐹𝐹 ∙ (1 + 2 log2 𝑚𝑚) + 2∆𝑀𝑀

...

Delay of 𝐶𝐶𝑁𝑁: ∆𝐹𝐹𝐹𝐹 ∙ (1 + 𝑥𝑥 ∙ log2 𝑚𝑚) + 2∆𝑀𝑀 where 𝑥𝑥 satisfies

2 + 2𝑚𝑚 + 2𝑚𝑚2 + ⋯+ 2𝑚𝑚𝑥𝑥 = 𝑁𝑁

2 + 2𝑚𝑚 + ⋯+ 2𝑚𝑚𝑥𝑥 =
2(𝑚𝑚𝑥𝑥+1 − 1)

𝑚𝑚 − 1
= 𝑁𝑁

𝑥𝑥 =
ln �1 + 𝑁𝑁(𝑚𝑚 − 1)

2 �

ln𝑚𝑚
− 1

Thus, the delay of the last carry out is

∆𝐹𝐹𝐹𝐹 ∙ �1 + �
ln �1 + 𝑁𝑁(𝑚𝑚− 1)

2 �

ln𝑚𝑚
− 1� ∙ log2 𝑚𝑚� + 2∆𝑀𝑀

Problem #6 (Carry Skip Adder, 20 points)

The following diagram shows a 16-bit carry-skip adder designed using 4-bit adders.

1) Show the details of the calculations in the carry skip adder for the following inputs (fill in the
blanks).

𝐴𝐴 = 0101 0101 0101 0101

𝐵𝐵 = 1010 1010 1010 1010

𝐶𝐶0 = 1

Step 1)

[3:0] 𝑔𝑔0 = 0. 𝑔𝑔1 = 0. 𝑔𝑔2 = 0. 𝑔𝑔3 = 0. 𝑝𝑝0 = 1. 𝑝𝑝1 = 1. 𝑝𝑝2 = 1. 𝑝𝑝3 = 1.

[7:4] 𝑔𝑔4 = 0. 𝑔𝑔5 = 0. 𝑔𝑔6 = 0. 𝑔𝑔7 = 0. 𝑝𝑝4 = 1. 𝑝𝑝5 = 1. 𝑝𝑝6 = 1. 𝑝𝑝7 = 1.

[11:8] 𝑔𝑔8 = 0. 𝑔𝑔9 = 0. 𝑔𝑔10 = 0. 𝑔𝑔11 = 0. 𝑝𝑝8 = 1. 𝑝𝑝9 = 1. 𝑝𝑝10 = 1. 𝑝𝑝11 = 1.

[15:12] 𝑔𝑔12 = 0. 𝑔𝑔13 = 0. 𝑔𝑔14 = 0. 𝑔𝑔15 = 0. 𝑝𝑝12 = 1. 𝑝𝑝13 = 1. 𝑝𝑝14 = 1. 𝑝𝑝15 = 1.

Step 2)

[3:0] 𝑔𝑔1:0 = 0. 𝑝𝑝1:0 = 1. 𝑔𝑔2:0 = 0. 𝑝𝑝2:0 = 1. 𝑔𝑔3:0 = 0. 𝑝𝑝3:0 = 1.

[7:4] 𝑔𝑔5:4 = 0. 𝑝𝑝5:4 = 1. 𝑔𝑔6:4 = 0. 𝑝𝑝6:4 = 1. 𝑔𝑔7:4 = 0. 𝑝𝑝7:4 = 1.

[11:8] 𝑔𝑔9:8 = 0. 𝑝𝑝9:8 = 1. 𝑔𝑔10:8 = 0. 𝑝𝑝10:8 = 1. 𝑔𝑔11:8 = 0. 𝑝𝑝11:8 = 1.

[15:12] 𝑔𝑔13:12 = 0. 𝑝𝑝13:12 = 1. 𝑔𝑔14:12 = 0. 𝑝𝑝14:12 = 1. 𝑔𝑔15:12 = 0. 𝑝𝑝15:12 = 1.

Step 3)

[3:0] 𝑐𝑐1 = 1. 𝑐𝑐2 = 1. 𝑐𝑐3 = 1.

𝑐𝑐4 = 1.

Step 4)

[3:0] 𝑠𝑠0 = 0. 𝑠𝑠1 = 0. 𝑠𝑠2 = 0. 𝑠𝑠3 = 0.

[7:4] 𝑐𝑐5 = 1. 𝑐𝑐6 = 1. 𝑐𝑐7 = 1.

𝑐𝑐8 = 1.

Step 5)

[7:4] 𝑠𝑠4 = 0. 𝑠𝑠5 = 0. 𝑠𝑠6 = 0. 𝑠𝑠7 = 0.

[11:8] 𝑐𝑐9 = 1. 𝑐𝑐10 = 1. 𝑐𝑐11 = 1.

𝑐𝑐12 = 1.

Step 6)

[11:8] 𝑠𝑠8 = 0. 𝑠𝑠9 = 0. 𝑠𝑠10 = 0. 𝑠𝑠11 = 0.

[15:12] 𝑐𝑐13 = 1. 𝑐𝑐14 = 1. 𝑐𝑐15 = 1.

𝑐𝑐16 = 1.

Step 7)

[15:12] 𝑠𝑠12 = 0. 𝑠𝑠13 = 0. 𝑠𝑠14 = 0. 𝑠𝑠15 = 0.

2) Repeat it for the following inputs.

𝐴𝐴 = 0101 0101 0101 0101

𝐵𝐵 = 1010 1010 1110 1010

𝐶𝐶0 = 1

Step 1)

[3:0] 𝑔𝑔0 = 0. 𝑔𝑔1 = 0. 𝑔𝑔2 = 0. 𝑔𝑔3 = 0. 𝑝𝑝0 = 1. 𝑝𝑝1 = 1. 𝑝𝑝2 = 1. 𝑝𝑝3 = 1.

[7:4] 𝑔𝑔4 = 0. 𝑔𝑔5 = 0. 𝑔𝑔6 = 1. 𝑔𝑔7 = 0. 𝑝𝑝4 = 1. 𝑝𝑝5 = 1. 𝑝𝑝6 = 0. 𝑝𝑝7 = 1.

[11:8] 𝑔𝑔8 = 0. 𝑔𝑔9 = 0. 𝑔𝑔10 = 0. 𝑔𝑔11 = 0. 𝑝𝑝8 = 1. 𝑝𝑝9 = 1. 𝑝𝑝10 = 1. 𝑝𝑝11 = 1.

[15:12] 𝑔𝑔12 = 0. 𝑔𝑔13 = 0. 𝑔𝑔14 = 0. 𝑔𝑔15 = 0. 𝑝𝑝12 = 1. 𝑝𝑝13 = 1. 𝑝𝑝14 = 1. 𝑝𝑝15 = 1.

Step 2)

[3:0] 𝑔𝑔1:0 = 0. 𝑝𝑝1:0 = 1. 𝑔𝑔2:0 = 0. 𝑝𝑝2:0 = 1. 𝑔𝑔3:0 = 0. 𝑝𝑝3:0 = 1.

[7:4] 𝑔𝑔5:4 = 0. 𝑝𝑝5:4 = 1. 𝑔𝑔6:4 = 1. 𝑝𝑝6:4 = 0. 𝑔𝑔7:4 = 1. 𝑝𝑝7:4 =0.

[11:8] 𝑔𝑔9:8 = 0. 𝑝𝑝9:8 = 1. 𝑔𝑔10:8 = 0. 𝑝𝑝10:8 = 1. 𝑔𝑔11:8 = 0. 𝑝𝑝11:8 = 1.

[15:12] 𝑔𝑔13:12 = 0. 𝑝𝑝13:12 = 1. 𝑔𝑔14:12 = 0. 𝑝𝑝14:12 = 1. 𝑔𝑔15:12 = 0. 𝑝𝑝15:12 = 1.

Step 3)

[3:0] 𝑐𝑐1 = 1. 𝑐𝑐2 = 1. 𝑐𝑐3 = 1.

𝑐𝑐4 = 1.

Step 4)

[3:0] 𝑠𝑠0 = 0. 𝑠𝑠1 = 0. 𝑠𝑠2 = 0. 𝑠𝑠3 = 0.

[7:4] 𝑐𝑐5 = 1. 𝑐𝑐6 = 1. 𝑐𝑐7 = 1.

𝑐𝑐8 = 1.

Step 5)

[7:4] 𝑠𝑠4 = 0. 𝑠𝑠5 = 0. 𝑠𝑠6 = 1. 𝑠𝑠7 = 0.

[11:8] 𝑐𝑐9 = 1. 𝑐𝑐10 = 1. 𝑐𝑐11 = 1.

𝑐𝑐12 = 1.

Step 6)

[11:8] 𝑠𝑠8 = 0. 𝑠𝑠9 = 0. 𝑠𝑠10 = 0. 𝑠𝑠11 = 0.

[15:12] 𝑐𝑐13 = 1. 𝑐𝑐14 = 1. 𝑐𝑐15 = 1.

𝑐𝑐16 = 1.

Step 7)

[15:12] 𝑠𝑠12 = 0. 𝑠𝑠13 = 0. 𝑠𝑠14 = 0. 𝑠𝑠15 = 0.

Problem #7 (Prefix Adder, 10 points)

Use the following delay values:

• AND, OR, XOR: ∆
• Two-level (sum-of-product) logic: 2∆
• 𝑔𝑔𝑖𝑖 = 𝑎𝑎𝑖𝑖 ∙ 𝑏𝑏𝑖𝑖, 𝑝𝑝𝑖𝑖 = 𝑎𝑎𝑖𝑖 ⊕ 𝑏𝑏𝑖𝑖

We are designing a 1024-bit Kogge-Stone adder.

Represent 𝑠𝑠885 hierarchically using group-generated and group-propagated carries (𝑔𝑔𝑖𝑖:𝑘𝑘, 𝑝𝑝𝑖𝑖:𝑘𝑘)
and 𝑐𝑐0 (primary carry-in), then compute the delay to compute 𝑠𝑠885 assuming all the primary
input signals are available at time 0 (10 points).

𝑠𝑠885 = 𝑝𝑝885 ⊕ 𝑐𝑐885

𝑐𝑐885 = 𝑔𝑔884:0 + 𝑝𝑝884:0 ⋅ 𝑐𝑐0

𝑔𝑔884:0 = 𝑔𝑔884:373 + 𝑝𝑝884:373 ⋅ 𝑔𝑔372:0 (𝑝𝑝884:0 = 𝑝𝑝884:373 ⋅ 𝑝𝑝372:0)

𝑔𝑔884:373 = 𝑔𝑔884:629 + 𝑝𝑝884:629 ⋅ 𝑔𝑔628:373

𝑔𝑔884:629 = 𝑔𝑔884:757 + 𝑝𝑝884:757 ⋅ 𝑔𝑔756:629

𝑔𝑔884:757 = 𝑔𝑔884:821 + 𝑝𝑝884:821 ⋅ 𝑔𝑔820:757

𝑔𝑔884:821 = 𝑔𝑔884:853 + 𝑝𝑝884:853 ⋅ 𝑔𝑔852:821

𝑔𝑔884:853 = 𝑔𝑔884:869 + 𝑝𝑝884:869 ⋅ 𝑔𝑔868:853

𝑔𝑔884:869 = 𝑔𝑔884:877 + 𝑝𝑝884:877 ⋅ 𝑔𝑔876:869

𝑔𝑔884:877 = 𝑔𝑔884:881 + 𝑝𝑝884:881 ⋅ 𝑔𝑔880:877

𝑔𝑔884:881 = 𝑔𝑔884:883 + 𝑝𝑝884:883 ⋅ 𝑔𝑔882:881

𝑔𝑔884:883 = 𝑔𝑔884 + 𝑝𝑝884 ⋅ 𝑔𝑔883

Delay = ∆ + 2∆ + 2∆ + 2∆ + 2∆ + 2∆ + 2∆ + 2∆ + 2∆ + 2∆ + 2∆ + 2∆ + ∆= 24∆

Problem #8 (Prefix Adder, 10 points)

Use the following delay values:

• AND, OR, XOR: ∆
• Two-level (sum-of-product) logic: 2∆
• 𝑔𝑔𝑖𝑖 = 𝑎𝑎𝑖𝑖 ∙ 𝑏𝑏𝑖𝑖, 𝑝𝑝𝑖𝑖 = 𝑎𝑎𝑖𝑖 ⊕ 𝑏𝑏𝑖𝑖

We are designing a 1024-bit adder, which is similar to the Kogge-Stone adder. However, we will
design the adder as follows.

• Step 0: Compute 𝑔𝑔𝑖𝑖 and 𝑝𝑝𝑖𝑖.
• Step 1: Instead of generating 𝑔𝑔𝑖𝑖:𝑖𝑖−1,𝑝𝑝𝑖𝑖:𝑖𝑖−1 for each 𝑖𝑖 by merging 𝑔𝑔𝑖𝑖,𝑝𝑝𝑖𝑖 and 𝑔𝑔𝑖𝑖−1,𝑝𝑝𝑖𝑖−1,

generate 𝑔𝑔𝑖𝑖:𝑖𝑖−3,𝑝𝑝𝑖𝑖:𝑖𝑖−3 for each 𝑖𝑖 (except 𝑖𝑖 = 0,1,2. For i=1, merge 𝑔𝑔1,𝑝𝑝1,𝑔𝑔0,𝑝𝑝0. For i=2,
merge 𝑔𝑔2,𝑝𝑝2, … ,𝑔𝑔0,𝑝𝑝0) by merging 𝑔𝑔𝑖𝑖, 𝑝𝑝𝑖𝑖,𝑔𝑔𝑖𝑖−1,𝑝𝑝𝑖𝑖−1,𝑔𝑔𝑖𝑖−2,𝑝𝑝𝑖𝑖−2,𝑔𝑔𝑖𝑖−3,𝑝𝑝𝑖𝑖−3.

• Step 2: Generate 𝑔𝑔𝑖𝑖:𝑖𝑖−15,𝑝𝑝𝑖𝑖:𝑖𝑖−15 for each 𝑖𝑖 by merging
𝑔𝑔𝑖𝑖:𝑖𝑖−3,𝑝𝑝𝑖𝑖:𝑖𝑖−3,𝑔𝑔𝑖𝑖−4:𝑖𝑖−7,𝑝𝑝𝑖𝑖−4:𝑖𝑖−7,𝑔𝑔𝑖𝑖−8:𝑖𝑖−11,𝑝𝑝𝑖𝑖−8:𝑖𝑖−11,𝑔𝑔𝑖𝑖−12:𝑖𝑖−15,𝑝𝑝𝑖𝑖−12:𝑖𝑖−15. Notice that this
cannot be applied to 𝑖𝑖 = 0, … , 14. However, you can generate 𝑔𝑔𝑖𝑖:0,𝑝𝑝𝑖𝑖:0 for them properly.

• Step 3: Generate 𝑔𝑔𝑖𝑖:𝑖𝑖−63,𝑝𝑝𝑖𝑖:𝑖𝑖−63 for each 𝑖𝑖.
• Repeat.

Represent 𝑠𝑠885 hierarchically using group-generated and group-propagated carries (𝑔𝑔𝑖𝑖:𝑘𝑘, 𝑝𝑝𝑖𝑖:𝑘𝑘)
and 𝑐𝑐0 (primary carry-in), then compute the delay to compute 𝑠𝑠885 assuming all the primary
input signals are available at time 0 (10 points).

𝑠𝑠885 = 𝑝𝑝885 ⊕ 𝑐𝑐885

𝑐𝑐885 = 𝑔𝑔884:0 + 𝑝𝑝884:0 ⋅ 𝑐𝑐0

𝑔𝑔884:0 = 𝑔𝑔884:629 + 𝑝𝑝884:629 ⋅ 𝑔𝑔628:373 + 𝑝𝑝884:629 ⋅ 𝑝𝑝628:373 ⋅ 𝑔𝑔372:117 + 𝑝𝑝884:629 ⋅ 𝑝𝑝628:373
⋅ 𝑝𝑝372:117 ⋅ 𝑔𝑔116:0

(𝑝𝑝884:0 = 𝑝𝑝884:629 ⋅ 𝑝𝑝628:373 ⋅ 𝑝𝑝372:117 ⋅ 𝑝𝑝116:0)

𝑔𝑔884:629 = 𝑔𝑔884:821 + 𝑝𝑝884:821 ⋅ 𝑔𝑔820:757 + 𝑝𝑝884:821 ⋅ 𝑝𝑝820:757 ⋅ 𝑔𝑔756:693 + 𝑝𝑝884:821 ⋅ 𝑝𝑝820:757
⋅ 𝑝𝑝756:693 ⋅ 𝑔𝑔692:629

𝑔𝑔884:821 = 𝑔𝑔884:869 + 𝑝𝑝884:869 ⋅ 𝑔𝑔868:853 + 𝑝𝑝884:869 ⋅ 𝑝𝑝868:853 ⋅ 𝑔𝑔852:837 + 𝑝𝑝884:869 ⋅ 𝑝𝑝868:853
⋅ 𝑝𝑝852:837 ⋅ 𝑔𝑔836:821

𝑔𝑔884:869 = 𝑔𝑔884:881 + 𝑝𝑝884:881 ⋅ 𝑔𝑔880:877 + 𝑝𝑝884:881 ⋅ 𝑝𝑝880:877 ⋅ 𝑔𝑔876:873 + 𝑝𝑝884:881 ⋅ 𝑝𝑝880:877
⋅ 𝑝𝑝876:873 ⋅ 𝑔𝑔872:869

𝑔𝑔884:881 = 𝑔𝑔884 + 𝑝𝑝884 ⋅ 𝑔𝑔883 + 𝑝𝑝884 ⋅ 𝑝𝑝883 ⋅ 𝑔𝑔882 + 𝑝𝑝884 ⋅ 𝑝𝑝883 ⋅ 𝑝𝑝882 ⋅ 𝑔𝑔881

Delay = ∆ + 2∆ + 2∆ + 2∆ + 2∆ + 2∆ + 2∆ + ∆= 14∆

Problem #9 (Carry Look-Ahead Adder, 40 points)

The max. fanout is 4. Use the following delay values:

• AND, OR, XOR: ∆
• Two-level (sum-of-product) logic: 2∆
• 𝑔𝑔𝑖𝑖 = 𝑎𝑎𝑖𝑖 ∙ 𝑏𝑏𝑖𝑖, 𝑝𝑝𝑖𝑖 = 𝑎𝑎𝑖𝑖 ⊕ 𝑏𝑏𝑖𝑖

We are designing a 2048-bit carry look-ahead adder.

1) Represent 𝑠𝑠885 hierarchically using group-generated and group-propagated carries (𝑔𝑔𝑖𝑖:𝑘𝑘, 𝑝𝑝𝑖𝑖:𝑘𝑘)
and 𝑐𝑐0 (primary carry-in), then compute the delay to compute 𝑠𝑠885 assuming all the primary
input signals are available at time 0 (10 points).

𝑠𝑠885 = 𝑝𝑝885⨁𝑐𝑐885

𝑐𝑐885 = 𝑔𝑔884 + 𝑝𝑝884 ⋅ 𝑐𝑐884

𝑐𝑐884 = 𝑔𝑔883:880 + 𝑝𝑝883:880 ⋅ 𝑐𝑐880

𝑐𝑐880 = 𝑔𝑔879:864 + 𝑝𝑝879:864 ⋅ 𝑔𝑔863:848 + 𝑝𝑝879:864 ⋅ 𝑝𝑝863:848 ⋅ 𝑔𝑔847:832 + 𝑝𝑝879:864 ⋅ 𝑝𝑝863:848
⋅ 𝑝𝑝847:832 ⋅ 𝑐𝑐832

𝑐𝑐832 = 𝑔𝑔831:768 + 𝑝𝑝831:768 ⋅ 𝑐𝑐768

𝑐𝑐768 = 𝑔𝑔767:512 + 𝑝𝑝767:512 ⋅ 𝑔𝑔511:256 + 𝑝𝑝767:512 ⋅ 𝑝𝑝511:256 ⋅ 𝑔𝑔255:0 + 𝑝𝑝767:512 ⋅ 𝑝𝑝511:256 ⋅ 𝑝𝑝255:0
⋅ 𝑐𝑐0

𝑔𝑔255:0 = 𝑔𝑔255:192 + 𝑝𝑝255:192 ⋅ 𝑔𝑔191:128 + 𝑝𝑝255:192 ⋅ 𝑝𝑝191:128 ⋅ 𝑔𝑔127:64 + 𝑝𝑝255:192 ⋅ 𝑝𝑝191:128 ⋅ 𝑝𝑝127:64
⋅ 𝑔𝑔63:0

𝑔𝑔63:0 = 𝑔𝑔63:48 + 𝑝𝑝63:48 ⋅ 𝑔𝑔47:32 + 𝑝𝑝63:48 ⋅ 𝑝𝑝47:32 ⋅ 𝑔𝑔31:16 + 𝑝𝑝63:48 ⋅ 𝑝𝑝47:32 ⋅ 𝑝𝑝31:16 ⋅ 𝑔𝑔15:0

𝑔𝑔15:0 = 𝑔𝑔15:12 + 𝑝𝑝15:12 ⋅ 𝑔𝑔11:8 + 𝑝𝑝15:12 ⋅ 𝑝𝑝11:8 ⋅ 𝑔𝑔7:4 + 𝑝𝑝15:12 ⋅ 𝑝𝑝11:8 ⋅ 𝑝𝑝7:4 ⋅ 𝑔𝑔3:0

𝑔𝑔3:0 = 𝑔𝑔3 + 𝑝𝑝3 ⋅ 𝑔𝑔2 + 𝑝𝑝3 ⋅ 𝑝𝑝2 ⋅ 𝑔𝑔1 + 𝑝𝑝3 ⋅ 𝑝𝑝2 ⋅ 𝑝𝑝1 ⋅ 𝑔𝑔0

Delay = ∆ + 2∆ + 2∆ + 2∆ + 2∆ + 2∆ + 2∆ + 2∆ + 2∆ + 2∆ + ∆= 20∆

2) Represent 𝑠𝑠2019 hierarchically using group-generated and group-propagated carries (𝑔𝑔𝑖𝑖:𝑘𝑘, 𝑝𝑝𝑖𝑖:𝑘𝑘)
and 𝑐𝑐0 (primary carry-in), then compute the delay to compute 𝑠𝑠2019 assuming all the primary
input signals are available at time 0 (10 points).

𝑠𝑠2019 = 𝑝𝑝2019⨁𝑐𝑐2019

𝑐𝑐2019 = 𝑔𝑔2018 + 𝑝𝑝2018 ⋅ 𝑔𝑔2017 + 𝑝𝑝2018 ⋅ 𝑝𝑝2017 ⋅ 𝑔𝑔2016 + 𝑝𝑝2018 ⋅ 𝑝𝑝2017 ⋅ 𝑝𝑝2016 ⋅ 𝑐𝑐2016

𝑐𝑐2016 = 𝑔𝑔2015:2000 + 𝑝𝑝2015:2000 ⋅ 𝑔𝑔1999:1984 + 𝑝𝑝2015:2000 ⋅ 𝑔𝑔1999:1984 ⋅ 𝑐𝑐1984

𝑐𝑐1984 = 𝑔𝑔1983:1920 + 𝑝𝑝1983:1920 ⋅ 𝑔𝑔1919:1856 + 𝑝𝑝1983:1920 ⋅ 𝑝𝑝1919:1856 ⋅ 𝑔𝑔1855:1792 + 𝑝𝑝1983:1920
⋅ 𝑝𝑝1919:1856 ⋅ 𝑝𝑝1855:1792 ⋅ 𝑐𝑐1792

𝑐𝑐1792 = 𝑔𝑔1791:1536 + 𝑝𝑝1791:1536 ⋅ 𝑔𝑔1535:1280 + 𝑝𝑝1791:1536 ⋅ 𝑝𝑝1535:1280 ⋅ 𝑔𝑔1279:1024 + 𝑝𝑝1791:1536
⋅ 𝑝𝑝1535:1280 ⋅ 𝑝𝑝1279:1024 ⋅ 𝑐𝑐1024

𝑐𝑐1024 = 𝑔𝑔1023:0 + 𝑝𝑝1023:0 ⋅ 𝑐𝑐0

𝑔𝑔1023:0 = 𝑔𝑔1023:768 + 𝑝𝑝1023:768 ⋅ 𝑔𝑔767:512 + 𝑝𝑝1023:768 ⋅ 𝑝𝑝767:512 ⋅ 𝑔𝑔511:256 + 𝑝𝑝1023:768 ⋅ 𝑝𝑝767:512
⋅ 𝑝𝑝511:256 ⋅ 𝑔𝑔255:0

𝑔𝑔255:0 = 𝑔𝑔255:192 + 𝑝𝑝255:192 ⋅ 𝑔𝑔191:128 + 𝑝𝑝255:192 ⋅ 𝑝𝑝191:128 ⋅ 𝑔𝑔127:64 + 𝑝𝑝255:192 ⋅ 𝑝𝑝191:128 ⋅ 𝑝𝑝127:64
⋅ 𝑔𝑔63:0

𝑔𝑔63:0 = 𝑔𝑔63:48 + 𝑝𝑝63:48 ⋅ 𝑔𝑔47:32 + 𝑝𝑝63:48 ⋅ 𝑝𝑝47:32 ⋅ 𝑔𝑔31:16 + 𝑝𝑝63:48 ⋅ 𝑝𝑝47:32 ⋅ 𝑝𝑝31:16 ⋅ 𝑔𝑔15:0

𝑔𝑔15:0 = 𝑔𝑔15:12 + 𝑝𝑝15:12 ⋅ 𝑔𝑔11:8 + 𝑝𝑝15:12 ⋅ 𝑝𝑝11:8 ⋅ 𝑔𝑔7:4 + 𝑝𝑝15:12 ⋅ 𝑝𝑝11:8 ⋅ 𝑝𝑝7:4 ⋅ 𝑔𝑔3:0

𝑔𝑔3:0 = 𝑔𝑔3 + 𝑝𝑝3 ⋅ 𝑔𝑔2 + 𝑝𝑝3 ⋅ 𝑝𝑝2 ⋅ 𝑔𝑔1 + 𝑝𝑝3 ⋅ 𝑝𝑝2 ⋅ 𝑝𝑝1 ⋅ 𝑔𝑔0

Delay = ∆ + 2∆ + 2∆ + 2∆ + 2∆ + 2∆ + 2∆ + 2∆ + 2∆ + 2∆ + 2∆ + ∆= 22∆

3) Show details of the calculations in the 16-bit carry-lookahead adder for the following inputs
(show 𝑔𝑔𝑖𝑖 ,𝑝𝑝𝑖𝑖, group generation/propagation bits, carry signals, etc.) Draw some block diagrams
too for the carry-lookahead units and show the values of the signals.

𝐴𝐴 = 0101 0101 0101 0101

𝐵𝐵 = 1010 1010 1010 1010

𝐶𝐶0 = 1

You can show the details like the one in Problem 6.

Step 1)

[3:0] 𝑔𝑔0,𝑔𝑔1,𝑔𝑔2,𝑔𝑔3 = 0. 𝑝𝑝0,𝑝𝑝1,𝑝𝑝2,𝑝𝑝3 = 1.

[7:4] 𝑔𝑔4,𝑔𝑔5,𝑔𝑔6,𝑔𝑔7 = 0. 𝑝𝑝4,𝑝𝑝5,𝑝𝑝6,𝑝𝑝7 = 1.

[11:8] 𝑔𝑔8,𝑔𝑔9,𝑔𝑔10,𝑔𝑔11 = 0. 𝑝𝑝8,𝑝𝑝9,𝑝𝑝10,𝑝𝑝11 = 1.

[15:12] 𝑔𝑔12,𝑔𝑔13,𝑔𝑔14,𝑔𝑔15 = 0. 𝑝𝑝12,𝑝𝑝13,𝑝𝑝14,𝑝𝑝15 = 1.

Step 2)

[3:0] 𝑔𝑔3:0 = 0. 𝑝𝑝3:0 = 1. 𝑐𝑐1 = 𝑔𝑔0 + 𝑝𝑝0𝑐𝑐0 = 1. 𝑐𝑐2 = 𝑔𝑔1 + 𝑝𝑝1𝑔𝑔1 + 𝑝𝑝1𝑝𝑝0𝑐𝑐0 = 1. 𝑐𝑐3 = 𝑔𝑔2 +
𝑝𝑝2𝑔𝑔1 + 𝑝𝑝2𝑝𝑝1𝑔𝑔0 + 𝑝𝑝2𝑝𝑝1𝑝𝑝0𝑐𝑐0 = 1.

[7:4] 𝑔𝑔7:4 = 0. 𝑝𝑝7:4 = 1.

[11:8] 𝑔𝑔11:8 = 0. 𝑝𝑝11:8 = 1.

[15:12] 𝑔𝑔15:12 = 0. 𝑝𝑝15:12 = 1.

Step 3)

[3:0] 𝑠𝑠0 = 𝑝𝑝0⨁𝑐𝑐0 = 0. 𝑠𝑠1 = 0. 𝑠𝑠2 = 0. 𝑠𝑠3 = 0.

𝑐𝑐4 = 𝑔𝑔3:0 + 𝑝𝑝3:0𝑐𝑐0 = 1. 𝑐𝑐8 = 𝑔𝑔7:4 + 𝑝𝑝7:4𝑔𝑔3:0 + 𝑝𝑝7:4𝑝𝑝3:0𝑐𝑐0 = 1. 𝑐𝑐12 = 𝑔𝑔11:8 + 𝑝𝑝11:8𝑔𝑔7:4 +
𝑝𝑝11:8𝑝𝑝7:4𝑔𝑔3:0 + 𝑝𝑝11:8𝑝𝑝7:4𝑝𝑝3:0𝑐𝑐0 = 1.

𝑔𝑔15:0 = 0. 𝑝𝑝15:0 = 1.

Step 4)

𝑐𝑐16 = 𝑔𝑔15:0 + 𝑝𝑝15:0𝑐𝑐0 = 1.

[7:4] 𝑐𝑐5 = 1. 𝑐𝑐6 = 1. 𝑐𝑐7 = 1.

[11:8] 𝑐𝑐9 = 1. 𝑐𝑐10 = 1. 𝑐𝑐11 = 1.

[15:12] 𝑐𝑐13 = 1. 𝑐𝑐14 = 1. 𝑐𝑐15 = 1.

Step 5)

[7:4] 𝑠𝑠4 = 0. 𝑠𝑠5 = 0. 𝑠𝑠6 = 0. 𝑠𝑠7 = 0.

[11:8] 𝑠𝑠8 = 0. 𝑠𝑠9 = 0. 𝑠𝑠10 = 0. 𝑠𝑠11 = 0.

[15:12] 𝑠𝑠12 = 0. 𝑠𝑠13 = 0. 𝑠𝑠14 = 0. 𝑠𝑠15 = 0.

4) Repeat it for the following inputs.

𝐴𝐴 = 0101 0101 0101 0101

𝐵𝐵 = 1010 1010 1110 1010

𝐶𝐶0 = 1

Step 1)

[3:0] 𝑔𝑔0,𝑔𝑔1,𝑔𝑔2,𝑔𝑔3 = 0. 𝑝𝑝0,𝑝𝑝1,𝑝𝑝2,𝑝𝑝3 = 1.

[7:4] 𝑔𝑔4,𝑔𝑔5,𝑔𝑔7 = 0. 𝑔𝑔6 = 1. 𝑝𝑝4,𝑝𝑝5,𝑝𝑝7 = 1. 𝑝𝑝6 = 0.

[11:8] 𝑔𝑔8,𝑔𝑔9,𝑔𝑔10,𝑔𝑔11 = 0. 𝑝𝑝8,𝑝𝑝9,𝑝𝑝10,𝑝𝑝11 = 1.

[15:12] 𝑔𝑔12,𝑔𝑔13,𝑔𝑔14,𝑔𝑔15 = 0. 𝑝𝑝12,𝑝𝑝13,𝑝𝑝14,𝑝𝑝15 = 1.

Step 2)

[3:0] 𝑔𝑔3:0 = 0. 𝑝𝑝3:0 = 1. 𝑐𝑐1 = 𝑔𝑔0 + 𝑝𝑝0𝑐𝑐0 = 1. 𝑐𝑐2 = 𝑔𝑔1 + 𝑝𝑝1𝑔𝑔1 + 𝑝𝑝1𝑝𝑝0𝑐𝑐0 = 1. 𝑐𝑐3 = 𝑔𝑔2 +
𝑝𝑝2𝑔𝑔1 + 𝑝𝑝2𝑝𝑝1𝑔𝑔0 + 𝑝𝑝2𝑝𝑝1𝑝𝑝0𝑐𝑐0 = 1.

[7:4] 𝑔𝑔7:4 = 1. 𝑝𝑝7:4 = 0.

[11:8] 𝑔𝑔11:8 = 0. 𝑝𝑝11:8 = 1.

[15:12] 𝑔𝑔15:12 = 0. 𝑝𝑝15:12 = 1.

Step 3)

[3:0] 𝑠𝑠0 = 𝑝𝑝0⨁𝑐𝑐0 = 0. 𝑠𝑠1 = 0. 𝑠𝑠2 = 0. 𝑠𝑠3 = 0.

𝑐𝑐4 = 𝑔𝑔3:0 + 𝑝𝑝3:0𝑐𝑐0 = 1. 𝑐𝑐8 = 𝑔𝑔7:4 + 𝑝𝑝7:4𝑔𝑔3:0 + 𝑝𝑝7:4𝑝𝑝3:0𝑐𝑐0 = 1. 𝑐𝑐12 = 𝑔𝑔11:8 + 𝑝𝑝11:8𝑔𝑔7:4 +
𝑝𝑝11:8𝑝𝑝7:4𝑔𝑔3:0 + 𝑝𝑝11:8𝑝𝑝7:4𝑝𝑝3:0𝑐𝑐0 = 1.

𝑔𝑔15:0 = 1. 𝑝𝑝15:0 = 0.

Step 4)

𝑐𝑐16 = 𝑔𝑔15:0 + 𝑝𝑝15:0𝑐𝑐0 = 1.

[7:4] 𝑐𝑐5 = 1. 𝑐𝑐6 = 1. 𝑐𝑐7 = 1.

[11:8] 𝑐𝑐9 = 1. 𝑐𝑐10 = 1. 𝑐𝑐11 = 1.

[15:12] 𝑐𝑐13 = 1. 𝑐𝑐14 = 1. 𝑐𝑐15 = 1.

Step 5)

[7:4] 𝑠𝑠4 = 0. 𝑠𝑠5 = 0. 𝑠𝑠6 = 1. 𝑠𝑠7 = 0.

[11:8] 𝑠𝑠8 = 0. 𝑠𝑠9 = 0. 𝑠𝑠10 = 0. 𝑠𝑠11 = 0.

[15:12] 𝑠𝑠12 = 0. 𝑠𝑠13 = 0. 𝑠𝑠14 = 0. 𝑠𝑠15 = 0.

