
EE466

VLSI Design

Final Exam

Dec. 13, 2019. (3:10pm – 5:10pm)

Instructor: Dae Hyun Kim (daehyun@eecs.wsu.edu)

 Name:

 WSU ID:

Problem Points
1 10
2 10
3 10
4 10
5 10
6 20
7 10
8 10
9 40

Total 130

* Allowed: Textbooks, cheat sheets, class notes, notebooks, calculators, watches, electronic devices.

* Not allowed: Chat apps.

mailto:daehyun@eecs.wsu.edu

Problem #1 (Sequential Logic, 10 points)

The left one is a positive-edge-triggered explicit-pulsed D flip-flop (epDFF). The right one is a
negative-edge-triggered epDFF.

Do the two FFs have the same hold-time constraint for D=0?

Do the two FFs have the same hold-time constraint for D=1?

Problem #2 (Domino Logic, 10 points)

The following shows a three-stage domino logic for 𝑌𝑌 = 𝑁𝑁1 ∙ 𝑁𝑁2 ∙ 𝑁𝑁3 (the inputs to the NFET
networks are not shown). The sizes of all the PFETs and the inverters are fixed (constants). All
the given timing constraints are also fixed.

Now, we merge the PFETs into a single PFET as follows:

1) Will it work? If no, explain why. If yes, can you compare the size of the PFET in the second
schematic and the sum of the sizes of the PFETs in the first schematic?

Now, let’s merge the NFETs into a single NFET as follows:

2) Will it work? If no, explain why. If yes, can you compare the size of the clock NFET in the
third schematic and the sum of the sizes of the clock NFETs in the first schematic?

Problem #3 (Sequential Logic, 10 points)

The following shows a schematic of a D-F/F. Estimate the hold time constraint of the F/F (for
example, “one inverter delay + one transmission gate delay”).

Problem #4 (Carry Select Adder, 10 points)

The following shows a schematic of a 2k-bit carry select adder designed using k-bit parallel
adders. The delay of a k-bit adder is ∆𝐹𝐹𝐹𝐹 ∙ log2 𝑘𝑘, the delay of a k-bit MUX is ∆𝑀𝑀, and the delay
of a two-input AND (or OR) gate is ∆𝑀𝑀.

We are supposed to design an N-bit adder using carry select adders (# groups: 𝑁𝑁
𝑘𝑘

). Find 𝑘𝑘
minimizing the delay of the N-bit adder (express the optimal k as a function of N, ∆𝑀𝑀, and ∆𝐹𝐹𝐹𝐹).
Notice that the worst-case delay occurs at 𝐶𝐶𝑁𝑁 (the final carry out) or 𝑆𝑆𝑁𝑁−1:0 (the final sum). Just a

small math hint: log2 𝑘𝑘 = ln𝑘𝑘
ln2

, 𝑑𝑑(ln 𝑥𝑥)
𝑑𝑑𝑑𝑑

= 1
𝑥𝑥
.

Problem #5 (Carry Select Adder, 10 points)

To radically improve the delay of a carry-select adder, we design an N-bit carry-select adder as
follows:

We design the k-bit adder using a k-bit parallel adder where 𝑘𝑘 is 2𝑚𝑚𝑖𝑖 (𝑖𝑖 is an integer greater than
or equal to 0).

The following shows the delays of the components:

• k-bit adder: ∆𝐹𝐹𝐹𝐹 ∙ log2 𝑘𝑘 = ∆𝐹𝐹𝐹𝐹 ∙ log2�2𝑚𝑚𝑖𝑖� = ∆𝐹𝐹𝐹𝐹 ∙ (1 + 𝑖𝑖 ∙ log2 𝑚𝑚)
• 𝑘𝑘-bit MUX: ∆𝑀𝑀
• ∆𝐹𝐹𝐹𝐹> 2 ∗ ∆𝑀𝑀

Express the delay of the last carry out 𝐶𝐶𝑁𝑁 using 𝑁𝑁, 𝑚𝑚, ∆𝐹𝐹𝐹𝐹, and ∆𝑀𝑀.

Problem #6 (Carry Skip Adder, 20 points)

The following diagram shows a 16-bit carry-skip adder designed using 4-bit adders.

1) Show the details of the calculations in the carry skip adder for the following inputs (fill in the
blanks).

𝐴𝐴 = 0101 0101 0101 0101

𝐵𝐵 = 1010 1010 1010 1010

𝐶𝐶0 = 1

Step 1)

[3:0] 𝑔𝑔0 = ___. 𝑔𝑔1 = ___. 𝑔𝑔2 = ___. 𝑔𝑔3 = ___. 𝑝𝑝0 = ___. 𝑝𝑝1 = ___. 𝑝𝑝2 = ___. 𝑝𝑝3 = ___.

[7:4] 𝑔𝑔4 = ___. 𝑔𝑔5 = ___. 𝑔𝑔6 = ___. 𝑔𝑔7 = ___. 𝑝𝑝4 = ___. 𝑝𝑝5 = ___. 𝑝𝑝6 = ___. 𝑝𝑝7 = ___.

[11:8] 𝑔𝑔8 = ___. 𝑔𝑔9 = ___. 𝑔𝑔10 = ___. 𝑔𝑔11 = ___. 𝑝𝑝8 = ___. 𝑝𝑝9 = ___. 𝑝𝑝10 = ___. 𝑝𝑝11 = ___.

[15:12] 𝑔𝑔12 = ___. 𝑔𝑔13 = ___. 𝑔𝑔14 = ___. 𝑔𝑔15 = ___. 𝑝𝑝12 = ___. 𝑝𝑝13 = ___. 𝑝𝑝14 = ___.
𝑝𝑝15 = ___.

Step 2)

[3:0] 𝑔𝑔1:0 = ___. 𝑝𝑝1:0 = ___. 𝑔𝑔2:0 = ___. 𝑝𝑝2:0 = ___. 𝑔𝑔3:0 = ___. 𝑝𝑝3:0 = ___.

[7:4] 𝑔𝑔5:4 = ___. 𝑝𝑝5:4 = ___. 𝑔𝑔6:4 = ___. 𝑝𝑝6:4 = ___. 𝑔𝑔7:4 = ___. 𝑝𝑝7:4 = ___.

[11:8] 𝑔𝑔9:8 = ___. 𝑝𝑝9:8 = ___. 𝑔𝑔10:8 = ___. 𝑝𝑝10:8 = ___. 𝑔𝑔11:8 = ___. 𝑝𝑝11:8 = ___.

[15:12] 𝑔𝑔13:12 = ___. 𝑝𝑝13:12 = ___. 𝑔𝑔14:12 = ___. 𝑝𝑝14:12 = ___. 𝑔𝑔15:12 = ___. 𝑝𝑝15:12 = ___.

Step 3)

[3:0] 𝑐𝑐1 = ___. 𝑐𝑐2 = ___. 𝑐𝑐3 = ___.

𝑐𝑐4 = ___.

Step 4)

[3:0] 𝑠𝑠0 = ___. 𝑠𝑠1 = ___. 𝑠𝑠2 = ___. 𝑠𝑠3 = ___.

[7:4] 𝑐𝑐5 = ___. 𝑐𝑐6 = ___. 𝑐𝑐7 = ___.

𝑐𝑐8 = ___.

Step 5)

[7:4] 𝑠𝑠4 = ___. 𝑠𝑠5 = ___. 𝑠𝑠6 = ___. 𝑠𝑠7 = ___.

[11:8] 𝑐𝑐9 = ___. 𝑐𝑐10 = ___. 𝑐𝑐11 = ___.

𝑐𝑐12 = ___.

Step 6)

[11:8] 𝑠𝑠8 = ___. 𝑠𝑠9 = ___. 𝑠𝑠10 = ___. 𝑠𝑠11 = ___.

[15:12] 𝑐𝑐13 = ___. 𝑐𝑐14 = ___. 𝑐𝑐15 = ___.

𝑐𝑐16 = ___.

Step 7)

[15:12] 𝑠𝑠12 = ___. 𝑠𝑠13 = ___. 𝑠𝑠14 = ___. 𝑠𝑠15 = ___.

2) Repeat it for the following inputs.

𝐴𝐴 = 0101 0101 0101 0101

𝐵𝐵 = 1010 1010 1110 1010

𝐶𝐶0 = 1

Step 1)

[3:0] 𝑔𝑔0 = ___. 𝑔𝑔1 = ___. 𝑔𝑔2 = ___. 𝑔𝑔3 = ___. 𝑝𝑝0 = ___. 𝑝𝑝1 = ___. 𝑝𝑝2 = ___. 𝑝𝑝3 = ___.

[7:4] 𝑔𝑔4 = ___. 𝑔𝑔5 = ___. 𝑔𝑔6 = ___. 𝑔𝑔7 = ___. 𝑝𝑝4 = ___. 𝑝𝑝5 = ___. 𝑝𝑝6 = ___. 𝑝𝑝7 = ___.

[11:8] 𝑔𝑔8 = ___. 𝑔𝑔9 = ___. 𝑔𝑔10 = ___. 𝑔𝑔11 = ___. 𝑝𝑝8 = ___. 𝑝𝑝9 = ___. 𝑝𝑝10 = ___. 𝑝𝑝11 = ___.

[15:12] 𝑔𝑔12 = ___. 𝑔𝑔13 = ___. 𝑔𝑔14 = ___. 𝑔𝑔15 = ___. 𝑝𝑝12 = ___. 𝑝𝑝13 = ___. 𝑝𝑝14 = ___.
𝑝𝑝15 = ___.

Step 2)

[3:0] 𝑔𝑔1:0 = ___. 𝑝𝑝1:0 = ___. 𝑔𝑔2:0 = ___. 𝑝𝑝2:0 = ___. 𝑔𝑔3:0 = ___. 𝑝𝑝3:0 = ___.

[7:4] 𝑔𝑔5:4 = ___. 𝑝𝑝5:4 = ___. 𝑔𝑔6:4 = ___. 𝑝𝑝6:4 = ___. 𝑔𝑔7:4 = ___. 𝑝𝑝7:4 = ___.

[11:8] 𝑔𝑔9:8 = ___. 𝑝𝑝9:8 = ___. 𝑔𝑔10:8 = ___. 𝑝𝑝10:8 = ___. 𝑔𝑔11:8 = ___. 𝑝𝑝11:8 = ___.

[15:12] 𝑔𝑔13:12 = ___. 𝑝𝑝13:12 = ___. 𝑔𝑔14:12 = ___. 𝑝𝑝14:12 = ___. 𝑔𝑔15:12 = ___. 𝑝𝑝15:12 = ___.

Step 3)

[3:0] 𝑐𝑐1 = ___. 𝑐𝑐2 = ___. 𝑐𝑐3 = ___.

𝑐𝑐4 = ___.

Step 4)

[3:0] 𝑠𝑠0 = ___. 𝑠𝑠1 = ___. 𝑠𝑠2 = ___. 𝑠𝑠3 = ___.

[7:4] 𝑐𝑐5 = ___. 𝑐𝑐6 = ___. 𝑐𝑐7 = ___.

𝑐𝑐8 = ___.

Step 5)

[7:4] 𝑠𝑠4 = ___. 𝑠𝑠5 = ___. 𝑠𝑠6 = ___. 𝑠𝑠7 = ___.

[11:8] 𝑐𝑐9 = ___. 𝑐𝑐10 = ___. 𝑐𝑐11 = ___.

𝑐𝑐12 = ___.

Step 6)

[11:8] 𝑠𝑠8 = ___. 𝑠𝑠9 = ___. 𝑠𝑠10 = ___. 𝑠𝑠11 = ___.

[15:12] 𝑐𝑐13 = ___. 𝑐𝑐14 = ___. 𝑐𝑐15 = ___.

𝑐𝑐16 = ___.

Step 7)

[15:12] 𝑠𝑠12 = ___. 𝑠𝑠13 = ___. 𝑠𝑠14 = ___. 𝑠𝑠15 = ___.

Problem #7 (Prefix Adder, 10 points)

Use the following delay values:

• AND, OR, XOR: ∆
• Two-level (sum-of-product) logic: 2∆
• 𝑔𝑔𝑖𝑖 = 𝑎𝑎𝑖𝑖 ∙ 𝑏𝑏𝑖𝑖, 𝑝𝑝𝑖𝑖 = 𝑎𝑎𝑖𝑖 ⊕ 𝑏𝑏𝑖𝑖

We are designing a 1024-bit Kogge-Stone adder.

Represent 𝑠𝑠885 hierarchically using group-generated and group-propagated carries (𝑔𝑔𝑖𝑖:𝑘𝑘, 𝑝𝑝𝑖𝑖:𝑘𝑘)
and 𝑐𝑐0 (primary carry-in), then compute the delay to compute 𝑠𝑠885 assuming all the primary
input signals are available at time 0 (10 points).

Problem #8 (Prefix Adder, 10 points)

Use the following delay values:

• AND, OR, XOR: ∆
• Two-level (sum-of-product) logic: 2∆
• 𝑔𝑔𝑖𝑖 = 𝑎𝑎𝑖𝑖 ∙ 𝑏𝑏𝑖𝑖, 𝑝𝑝𝑖𝑖 = 𝑎𝑎𝑖𝑖 ⊕ 𝑏𝑏𝑖𝑖

We are designing a 1024-bit adder, which is similar to the Kogge-Stone adder. However, we will
design the adder as follows.

• Step 0: Compute 𝑔𝑔𝑖𝑖 and 𝑝𝑝𝑖𝑖.
• Step 1: Instead of generating 𝑔𝑔𝑖𝑖:𝑖𝑖−1,𝑝𝑝𝑖𝑖:𝑖𝑖−1 for each 𝑖𝑖 by merging 𝑔𝑔𝑖𝑖,𝑝𝑝𝑖𝑖 and 𝑔𝑔𝑖𝑖−1,𝑝𝑝𝑖𝑖−1,

generate 𝑔𝑔𝑖𝑖:𝑖𝑖−3,𝑝𝑝𝑖𝑖:𝑖𝑖−3 for each 𝑖𝑖 (except 𝑖𝑖 = 0,1,2. For i=1, merge 𝑔𝑔1,𝑝𝑝1,𝑔𝑔0,𝑝𝑝0. For i=2,
merge 𝑔𝑔2,𝑝𝑝2, … ,𝑔𝑔0,𝑝𝑝0) by merging 𝑔𝑔𝑖𝑖, 𝑝𝑝𝑖𝑖,𝑔𝑔𝑖𝑖−1,𝑝𝑝𝑖𝑖−1,𝑔𝑔𝑖𝑖−2,𝑝𝑝𝑖𝑖−2,𝑔𝑔𝑖𝑖−3,𝑝𝑝𝑖𝑖−3.

• Step 2: Generate 𝑔𝑔𝑖𝑖:𝑖𝑖−15,𝑝𝑝𝑖𝑖:𝑖𝑖−15 for each 𝑖𝑖 by merging
𝑔𝑔𝑖𝑖:𝑖𝑖−3,𝑝𝑝𝑖𝑖:𝑖𝑖−3,𝑔𝑔𝑖𝑖−4:𝑖𝑖−7,𝑝𝑝𝑖𝑖−4:𝑖𝑖−7,𝑔𝑔𝑖𝑖−8:𝑖𝑖−11,𝑝𝑝𝑖𝑖−8:𝑖𝑖−11,𝑔𝑔𝑖𝑖−12:𝑖𝑖−15,𝑝𝑝𝑖𝑖−12:𝑖𝑖−15. Notice that this
cannot be applied to 𝑖𝑖 = 0, … , 14. However, you can generate 𝑔𝑔𝑖𝑖:0,𝑝𝑝𝑖𝑖:0 for them properly.

• Step 3: Generate 𝑔𝑔𝑖𝑖:𝑖𝑖−63,𝑝𝑝𝑖𝑖:𝑖𝑖−63 for each 𝑖𝑖.
• Repeat.

Represent 𝑠𝑠885 hierarchically using group-generated and group-propagated carries (𝑔𝑔𝑖𝑖:𝑘𝑘, 𝑝𝑝𝑖𝑖:𝑘𝑘)
and 𝑐𝑐0 (primary carry-in), then compute the delay to compute 𝑠𝑠885 assuming all the primary
input signals are available at time 0 (10 points).

Problem #9 (Carry Look-Ahead Adder, 40 points)

The max. fanout is 4. Use the following delay values:

• AND, OR, XOR: ∆
• Two-level (sum-of-product) logic: 2∆
• 𝑔𝑔𝑖𝑖 = 𝑎𝑎𝑖𝑖 ∙ 𝑏𝑏𝑖𝑖, 𝑝𝑝𝑖𝑖 = 𝑎𝑎𝑖𝑖 ⊕ 𝑏𝑏𝑖𝑖

We are designing a 2048-bit carry look-ahead adder.

1) Represent 𝑠𝑠885 hierarchically using group-generated and group-propagated carries (𝑔𝑔𝑖𝑖:𝑘𝑘, 𝑝𝑝𝑖𝑖:𝑘𝑘)
and 𝑐𝑐0 (primary carry-in), then compute the delay to compute 𝑠𝑠885 assuming all the primary
input signals are available at time 0 (10 points).

2) Represent 𝑠𝑠2019 hierarchically using group-generated and group-propagated carries (𝑔𝑔𝑖𝑖:𝑘𝑘, 𝑝𝑝𝑖𝑖:𝑘𝑘)
and 𝑐𝑐0 (primary carry-in), then compute the delay to compute 𝑠𝑠2019 assuming all the primary
input signals are available at time 0 (10 points).

3) Show details of the calculations in the 16-bit carry-lookahead adder for the following inputs
(show 𝑔𝑔𝑖𝑖 ,𝑝𝑝𝑖𝑖, group generation/propagation bits, carry signals, etc.) Draw some block diagrams
too for the carry-lookahead units and show the values of the signals.

𝐴𝐴 = 0101 0101 0101 0101

𝐵𝐵 = 1010 1010 1010 1010

𝐶𝐶0 = 1

You can show the details like the one in Problem 6.

4) Repeat it for the following inputs.

𝐴𝐴 = 0101 0101 0101 0101

𝐵𝐵 = 1010 1010 1110 1010

𝐶𝐶0 = 1

