EE466

VLSI System Design

Midterm Exam

Oct. 24, 2018. (4:15pm - 5:30pm)

Instructor: Dae Hyun Kim (daehyun@eecs.wsu.edu)

Name:

WSU ID:

Problem	Points	
1	10	
2	10	
3	10	
4	10	
5	10	
6	10	
7	10	
8	10	
Total	80	

* Allowed: Textbooks, cheat sheets, class notes, notebooks, calculators, watches
* Not allowed: Electronic devices (smart phones, tablet PCs, laptops, etc.) except calculators and watches

Problem \#1 (Static CMOS Gates, 10 points).

Draw a transistor-level schematic for the NFET network of the following Boolean function (Available input: $A, B, C, D, \bar{A}, \bar{B}, \bar{C}, \bar{D})$. Use the static CMOS gate design. Minimize the \# TRs.
\# TRs ≤ 12 : 10 points. $13 \leq \#$ TRs $\leq 14: 8$ points. $15 \leq \#$ TRs $\leq 16: 5$ points.

$$
\begin{gathered}
F=\overline{A \oplus(\overline{B \oplus(C D)})} \\
\bar{F}=A \oplus(\overline{B \oplus(C D)})=A \oplus(\overline{B \oplus E})=A(B \oplus E)+\bar{A} \cdot \overline{B \oplus E}=A \cdot(B \bar{E}+\bar{B} E)+\bar{A} \cdot(B E+\bar{B} \bar{E}) \\
=A \cdot(B(\bar{C}+\bar{D})+\bar{B} C D)+\bar{A} \cdot(B C D+\bar{B}(\bar{C}+\bar{D})) \\
=(A B+\bar{A} \bar{B})(\bar{C}+\bar{D})+(A \bar{B}+\bar{A} B) C D
\end{gathered}
$$

Problem \#2 (Transistor Sizing, 10 points).

Size the transistors in the following pull-down network of a static CMOS gate. R_{n} is the resistance of a 1X NMOS transistor. C_{L} is the load cap. Ignore all the parasitic capacitances. Target timing constraint: $\tau=R_{n} \cdot C_{L}$. Try to minimize the total area.

Area $\leq 36 X$: 10 points. $36 X<$ Area $\leq 38 X$: 7 points. $38 X<$ Area: 4 points.

The longest path: x1-x2-x3-x4-(x5 or x7). All of them become 5X.
x_{1} : 5 X
$x_{2}: 5 \mathrm{X}$
$x_{3}: 5 X$
x_{4} : 5 X
$x_{5}: 5 X$
$x_{6}: 2.5 \mathrm{X}$
x_{7} : 5X
$x_{8}: 5 / 3 X$

Problem \#3 (DC Analysis, 10 points).

Char 1

Char 2

The gate-level schematic shows a buffer composed of two inverters.
Buffer 1: Char 1 for INV1 and Char 2 for INV2
Buffer 2: Char 2 for INV1 and Char1 for INV2
Prove that the two buffers have the same DC characteristics.
Both of them have the same DC curve as follows:

Problem \#4 (Logic Analysis, 10 points).

Describe the function of the circuit shown above.
Dual-edge-triggered D-FF.

Problem \#5 (Sequential Logic, 10 points).

The circuit shown above is a positive-edge-triggered D FF. Let T_{X} be the sum of the delays of the two inverters and the NAND gate.
(1) Estimate the hold time of the FF for input $\mathrm{D}=0$.

Suppose $\mathrm{D}=0$. When CK goes high, N1 will be turned off after some delay. If D changes (i.e., becomes 1) before N 1 is turned off, X will be discharged and Q will become 1. Thus, D should not change before N 1 is turned off. Thus, the hold time for $\mathrm{D}=0$ is T_{X}.
(2) Estimate the hold time for input $D=1$.

Suppose $D=1$. When CK goes high, X will be discharged. Once it is fully discharged, even if D becomes 0 , there is no problem. Thus, the hold time for $D=1$ is T_{d}, which is the time to discharge node X .

Problem \#6 (Logic Analysis, 10 points).

The above circuit has two inputs (A, B) and two outputs (F1 and F2).
(1) Express F1 as a Boolean function of A and B.

$$
F 1=A \oplus B
$$

(2) Express F2 as a Boolean function of A and B.

$$
F 1=\overline{A \oplus B}
$$

(3) Does it have any static power consumption problem? Explain why (or why not).

When $A=1, B=0, N 3$ is $O N$, but $P 1$ is $O N$ and A is connected to $F 1$, so there is static power consumption. Same for $A=0, B=1$.

Problem \#7 (Sequential Logic, 10 points).

The circuit shown above is a positive-edge-triggered D FF. Notice that all the inverters and transmission gates have finite delays.
(1) Estimate the hold time of the FF for input $\mathrm{D}=0$.

The first TG will be turned off after two inverter delays. If D switches from 1 to 0 , the output of the inverter connected to D will be 1 after one inverter delay. Thus, as long as D holds 0 for one inverter delay (+ delta), it is safe.
(2) Estimate the hold time for input $D=1$.

For the same reason, the hold time is one inverter delay + delta for $D=1$.
(3) Estimate the signal delay (from a clock rising edge at the clock input to Q).

When CK goes high, the second TG is closed after two inverter delays. Then, Q changes after a TG delay + two inverter delays.

Problem \#8 (Power Consumption, 10 points).

The following figure shows an inverter with a parasitic cap and a load cap (10C). The parasitic cap is proportional to the sizes of the transistors connected to the cap. The PFET is upsized to bX and the NFET is upsized to $\mathrm{aX} \cdot \frac{\mu_{n}}{\mu_{p}}=2$. The rising delay should be $\leq 20 R_{n} C$ where R_{n} is the resistance of a 1X NFET. The falling delay should be \leq $10 R_{n} C$. Both a and b are integers.

Can you find a and b minimizing the power consumption and satisfying the given timing constraints? Notice that there are only a few combinations of (a, b) you need to calculate to answer this problem.

The rise delay is $t_{r}=\frac{R_{p}}{b} \cdot(a+b+10) C$ and the fall delay is $t_{f}=\frac{R_{n}}{a} \cdot(a+b+10) C$. The power consumption is $f(a+b+10) C V_{D D}{ }^{2}$, so minimizing the power is minimizing $a+b$.

$$
\begin{gathered}
t_{r}=\frac{2 R_{n}}{b} \cdot(a+b+10) C \leq 20 R_{n} C, \text { so } a+b+10 \leq 10 b, \text { so } a+10 \leq 9 b \\
t_{f}=\frac{R_{n}}{a} \cdot(a+b+10) C \leq 10 R_{n} C, \text { so } a+b+10 \leq 10 a, \text { so } b+10 \leq 9 a . \\
\frac{a+10}{9} \leq b \leq 9 a-10 .
\end{gathered}
$$

If $a=1, b$ is negative.
If $\mathrm{a}=2,1 \cdot X X \leq b \leq 8$, so b is 2 (to minimize $\mathrm{a}+\mathrm{b}$). In this case, $\mathrm{a}+\mathrm{b}=4$.
If $a=3, b=2$. If $a>=4, a+b>=5$.
Thus, $a=2 X, b=2 X$.

