EE466

VLSI System Design

Midterm Exam
 Oct. 24, 2018. (4:15pm - 5:30pm) Instructor: Dae Hyun Kim (daehyun@eecs.wsu.edu)

Name:

WSU ID:

Problem	Points	
1	10	
2	10	
3	10	
4	10	
5	10	
6	10	
7	10	
8	10	
Total	80	

* Allowed: Textbooks, cheat sheets, class notes, notebooks, calculators, watches
* Not allowed: Electronic devices (smart phones, tablet PCs, laptops, etc.) except calculators and watches

Problem \#1 (Static CMOS Gates, 10 points).

Draw a transistor-level schematic for the NFET network of the following Boolean function (Available input: $A, B, C, D, \bar{A}, \bar{B}, \bar{C}, \bar{D})$. Use the static CMOS gate design. Minimize the \# TRs.
\# TRs ≤ 12 : 10 points. $13 \leq \#$ TRs $\leq 14: 8$ points. $15 \leq \#$ TRs $\leq 16: 5$ points.

$$
F=\overline{A \oplus(\overline{B \oplus(C D)})}
$$

Problem \#2 (Transistor Sizing, 10 points).

Size the transistors in the following pull-down network of a static CMOS gate. R_{n} is the resistance of a 1X NMOS transistor. C_{L} is the load cap. Ignore all the parasitic capacitances. Target timing constraint: $\tau=R_{n} \cdot C_{L}$. Try to minimize the total area.

Area $\leq 36 X$: 10 points. $36 X<$ Area $\leq 38 X$: 7 points. $38 X<$ Area: 4 points.

x_{1} :
x_{2} :
x_{3} :
x_{4} :
x_{5} :
x_{6} :
x_{7} :
x_{8} :

Problem \#3 (DC Analysis, 10 points).

Char 1

Char 2

The gate-level schematic shows a buffer composed of two inverters.
Buffer 1: Char 1 for INV1 and Char 2 for INV2
Buffer 2: Char 2 for INV1 and Char1 for INV2
Prove that the two buffers have the same DC characteristics.

Problem \#4 (Logic Analysis, 10 points).

Describe the function of the circuit shown above.

Problem \#5 (Sequential Logic, 10 points).

The circuit shown above is a positive-edge-triggered D FF.
(1) Estimate the hold time of the FF for input $\mathrm{D}=0$.
(2) Estimate the hold time for input $\mathrm{D}=1$.

Problem \#6 (Logic Analysis, 10 points).

The above circuit has two inputs (A, B) and two outputs (F1 and F2).
(1) Express F1 as a Boolean function of A and B.
(2) Express F2 as a Boolean function of A and B.
(3) Does it have any static power consumption problem? Explain why (or why not).

Problem \#7 (Sequential Logic, 10 points).

The circuit shown above is a positive-edge-triggered D FF. Notice that all the inverters and transmission gates have finite delays.
(1) Estimate the hold time of the FF for input $\mathrm{D}=0$.
(2) Estimate the hold time for input $D=1$.
(3) Estimate the signal delay (from a clock rising edge at the clock input to Q).

Problem \#8 (Power Consumption, 10 points).

The following figure shows an inverter with a parasitic cap and a load cap (10C). The parasitic cap is proportional to the sizes of the transistors connected to the cap. The PFET is upsized to bX and the NFET is upsized to $\mathrm{aX} \cdot \frac{\mu_{n}}{\mu_{p}}=2$. The rising delay should be $\leq 20 R_{n} C$ where R_{n} is the resistance of a 1X NFET. The falling delay should be \leq $10 R_{n} C$. Both a and b are integers.

Can you find a and b minimizing the power consumption and satisfying the given timing constraints? Notice that there are only a few combinations of (a, b) you need to calculate to answer this problem.

