EE466

VLSI System Design

Midterm Exam

Dec. 14, 2020. (4pm - 6pm)
Instructor: Dae Hyun Kim (daehyun@eecs.wsu.edu)

Name:

WSU ID:

Problem	Points	
1	10	
2	10	
3	20	
4	10	
5	15	
6	10	
7	25	
8	25	
9	20	
Total	145	

* Allowed: Textbooks, cheat sheets, class notes, notebooks, calculators, watches
* Not allowed: Electronic devices (smart phones, tablet PCs, laptops, etc.) except calculators and watches

Problem \#1 (DC Analysis, 10 points)

Draw a DC curve ($V_{\text {in }}$ vs. $V_{\text {out }}$) for the following logic circuit. You should also show some important data points on the curve.

Problem \#2 (DC Analysis, 10 points)

Draw a DC curve ($V_{\text {in }}$ vs. $V_{\text {out }}$) for the following logic circuit. Assume $V_{t h, n}=\left|V_{t h, p}\right|$ for all the NFETs and PFETs. Just a rough sketch will be accepted.

Problem \#3 (Noise, 20 points)

The following shows a chain of inverters. $n_{i}(t)$ is a noise source and added to the signal as shown below. The range of $n_{i}(t)$ is $\left[-\frac{V_{D D}}{8}, \frac{V_{D D}}{4}\right]$. All the inverters have the same DC characteristics shown below. $V_{\text {in }}$ is 0 V for logic 0 and $V_{D D}$ for logic 1. Assume that $0<$ $V_{A} \leq \frac{V_{D D}}{4} \leq V_{B} \leq \frac{7 V_{D D}}{8}$. Find equations and/or inequalities that V_{A} and V_{B} should satisfy to avoid signal inversion.

1) If $V_{i n}$ is $0 V$ (logic 0), the output of the $1^{\text {st }}$ inverter is $V_{D D}$ (logic 1). The input to the $2^{\text {nd }}$ inverter is $\frac{7 V_{D D}}{8}$ in the worst case. Suppose the output of the $2^{\text {nd }}$ inverter is V_{2} (which should be logic 0). Then, the input to the $3^{\text {rd }}$ inverter is $V_{2}+\frac{V_{D D}}{4}$ in the worst case. If the output of the $3^{\text {rd }}$ inverter is less than $V_{D D}$, signal inversion will happen in the end.

Thus, $V_{2}+\frac{V_{D D}}{4} \leq V_{A}$.
Since $V_{B} \leq \frac{7 V_{D D}}{8}: V_{2}=0 V$, so $\frac{V_{D D}}{4} \leq V_{A}$. Since $V_{A} \leq \frac{V_{D D}}{4}$ in the problem, $V_{A}=\frac{V_{D D}}{4}$.
2) Similarly, if $V_{\text {in }}$ is $V_{D D}$ (logic 1), the output of the $1^{\text {st }}$ inverter is 0 (logic 0). The input to the $2^{\text {nd }}$ inverter is $\frac{V_{D D}}{4}$ in the worst case. Suppose the output of the $2^{\text {nd }}$ inverter is V_{3} (which should be logic 1). Then, the input to the $3^{\text {rd }}$ inverter is $V_{3}-\frac{V_{D D}}{8}$ in the worst case. If the output of the $3^{\text {rd }}$ inverter is greater than 0 V , signal inversion will happen in the end.

Thus, $V_{3}-\frac{V_{D D}}{8} \geq V_{B}$. Since $V_{A}=\frac{V_{D D}}{4}, V_{3}=V_{D D}$, so $\frac{7 V_{D D}}{8} \geq V_{B}$.

Problem \#4 (Transistor Sizing, 10 points)

Size the transistors in the following NFET network of a static CMOS gate. R_{n} is the resistance of a 1X NFET. C_{L} is the load cap. Ignore all the parasitic capacitances. Target timing constraint: $\tau \leq R_{n} \cdot C_{L}$. Try to minimize the total area.

Area $\leq 24 X$: 10 points. $24 X<$ Area $\leq 26 X$: 7 points. $26 X<$ Area: 4 points.
x1-x3-x4-x5 is the longest path, so we upsize them to 4X. (total 16X)
$x 1$ and $x 2$ and connected in parallel, so $x 2=4 X$. (total 20X)
$x 3-x 4$ and $x 6$ are connected in parallel, so $x 6=2 X$. (total 22X)
x1-x7 (or x2-x7): x7 should be 4/3X. (total 23.33X)
$x_{1}: 4 X$
$x_{2}: 4 X$
$x_{3}: 4 X$
$x_{4}: 4 X$
$x_{5}: 4 X$
$x_{6}: 2 X$
$x_{7}: \frac{4}{3} X$

Problem \#5 (Switching Characteristics, 15 points)

The following shows the NFET network of a logic gate designed by the static CMOS design methodology. It also shows a load capacitor C_{L} and three parasitic capacitors C_{1}, C_{2}, and C_{3}. The resistance of transistor x_{k} is R_{k}. Assume that all the capacitors are fully charged before we discharge them.

(1) Express the fall delay as a function of R_{k} and $C_{m}(k=1, \ldots, 7, m=1,2,3, L)$ for $\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}, x_{7}\right)=(1,0,1,1,1,0,0)$.

$$
\tau=R_{5}\left(C_{1}+C_{2}+C_{3}+C_{L}\right)+R_{4}\left(C_{1}+C_{3}+C_{L}\right)+R_{3}\left(C_{1}+C_{L}\right)+R_{1}\left(C_{L}\right)
$$

(2) Express the fall delay as a function of R_{k} and $C_{m}(k=1, \ldots, 7, m=1,2,3, L)$ for $\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}, x_{7}\right)=(1,1,0,0,1,1,0)$.

$$
\tau=R_{5}\left(C_{1}+C_{2}+C_{L}\right)+R_{6}\left(C_{1}+C_{L}\right)+\frac{R_{1} R_{2}}{R_{1}+R_{2}}\left(C_{L}\right)
$$

(3) Express the fall delay as a function of R_{k} and $C_{m}(k=1, \ldots, 7, m=1,2,3, L)$ for $\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}, x_{7}\right)=(0,1,0,0,0,0,1)$.

$$
\tau=R_{7}\left(C_{1}+C_{L}\right)+R_{2} C_{L}
$$

Problem \#6 (Memory, 10 points)

We want to design a register file having 16 64-bit registers and supporting four simultaneous accesses (i.e., we can access four different registers at the same time). Draw a 12-transistor SRAM cell supporting the four simultaneous accesses. The Wordline signals are $W_{0}, W_{1}, W_{2}, W_{3}$. The four pairs of Bit-line signals are $\left(B_{0}, \overline{B_{0}}\right),\left(B_{1}, \overline{B_{1}}\right),\left(B_{2}, \overline{B_{2}}\right),\left(B_{3}, \overline{B_{3}}\right)$. You should show the Word-line and Bit-line signals too in your figure.

Problem \#7 (Flip-Flop, 25 points).

The following schematic shows a positive-edge-triggered D flip-flop. CK is the clock input, Q is the output, and A, B, D are signal inputs. Answer the following questions.

(1) Express the output Q as a function of the input signals A, B, and D.
$Q=A+B+D$ (when CK switches from 0 to 1 , the FF captures $A+B+D$).
(2) Explain how you can estimate the setup time of the FF.
(3) Explain how you can estimate the hold time of the FF.

For input $\mathrm{A}=\mathrm{B}=\mathrm{D}=0$: If CK goes high, N 1 will be turned off after the delay of the three inverters. A, B, and D can change after N1 is turned off. Thus, the hold time for this input value combination is the delay of the three inverters.

For input $A=1$ or $B=1$ or $D=1$: If $C K$ goes high, $N 2$ is turned on and node X will be discharged through N1, N2, and the transistors A or B or D. Once we fully discharge node X, A, B, and D can change even if N1 is not turned off. Thus, the hold time for this input value combination is the time to discharge node X. (of course, the delay of the three inverters should be greater than the time to discharge node X.)

For the setup time, A, B, and D can change from 1 to 0 or from 0 to 1 right before a clock rising edge. Thus, the setup time for any input value combination is just some small value.

Problem \#8 (Flip-Flop, 25 points).

The following schematic shows a D flip-flop. CK is the clock input, Q is the output, and D is the data input signal. Answer the following questions.

(1) Is it positive-edge-triggered or negative-edge-triggered?

If $\mathrm{CK}=0, \mathrm{~N} 1$ is 1 , so Q is isolated and driven by Qb .
For $\mathrm{D}=0$: If CK goes high, T1 and T2 are turned on. T3 is OFF and T4 is ON. N2 was 1 when CK was 1, so Q will be discharged through $T 2$, $T 4$, and $T 5$. N2 will be 0 after some time, so T5 will eventually by turned off.

For $D=1$: T 3 is ON and T 4 is OFF. Suppose Q was 0 . Then, when CK was 0 , T6 was ON. If CK goes high, T1 is turned on, so N1 becomes 0 (discharged through T1, T3, and T6) and Q becomes 1. At the same time, N3 becomes 1, so T6 will eventually be turned off. Suppose Q was 1. Then, T6 was OFF. In this case, even if CK goes high, T6 is still OFF and N1 is 1 , but T4 is OFF, so Q will still be 1.

Thus, this is a positive-edge-triggered D-FF.
(2) Explain how you can estimate the setup time of the FF.
(3) Explain how you can estimate the hold time of the FF.

For $D=0$: D should not change before $T 5$ is turned off. Thus, the hold time for $D=0$ is the delay of the three inverters. Suppose D is 1 , then N 4 is 0 . If D becomes $0, \mathrm{~N} 4$ will become 1 after one inverter delay. Thus, the setup time is the delay of the inverter connected to input D.

For $D=1$: D can change after $N 1$ is fully discharged. Thus, the hold time for $D=1$ is the time to discharge node N1 through T1, T3, and T6. Suppose D is 0, then N4 is 1. T4
should be turned off before CK goes high, otherwise Q will be discharged. Turning T4 OFF takes a one-inverter delay. Thus, the setup time is the delay of the inverter connected to input D.

Problem \#9 (Flip-Flop, 20 points).

Suppose a D-FF design is given (DFF1) as shown below. Now, we design a new D-FF (DFF2) using a DFF1 as follows. DFF2 has two inverters between the input pin D of DFF2 and the input pin D of DFF1. Similarly, we design a new D-FF (DFF3) using a DFF1 as shown below. Notice that users of DFF2 and DFF3 cannot see the internal designs of DFF2 and DFF3.

DFF1

DFF2

DFF2

- Hold time and setup time of DFF1: h_{1} and s_{1}, respectively
- Hold time and setup time of DFF2: h_{2} and s_{2}, respectively
- Hold time and setup time of DFF3: h_{3} and s_{3}, respectively
- The delay of an inverter: d
- Clock period: T (duty cycle: 50%)
(1) Express h_{2} as a function of h_{1}, s_{1}, d, T.

$$
h_{2}=h_{1}-2 d
$$

(2) Express s_{2} as a function of h_{1}, s_{1}, d, T.

$$
s_{2}=s_{1}+2 d
$$

(3) Express h_{3} as a function of h_{1}, s_{1}, d, T.

$$
h_{3}=h_{1}+2 d
$$

(4) Express s_{3} as a function of h_{1}, s_{1}, d, T.

$$
s_{3}=s_{1}-2 d
$$

