EE466

VLSI System Design

Midterm Exam

Dec. 14, 2020. (4pm - 6pm)

Instructor: Dae Hyun Kim (daehyun@eecs.wsu.edu)

Name:

WSU ID:

Problem	Points	
1	10	
2	10	
3	20	
4	10	
5	15	
6	10	
7	25	
8	25	
9	20	
Total	145	

^{*} Allowed: Textbooks, cheat sheets, class notes, notebooks, calculators, watches

^{*} Not allowed: Electronic devices (smart phones, tablet PCs, laptops, etc.) except calculators and watches

Problem #1 (DC Analysis, 10 points)

Draw a DC curve (V_{in} vs. V_{out}) for the following logic circuit. You should also show some important data points on the curve.

Problem #2 (DC Analysis, 10 points)

Draw a DC curve (V_{in} vs. V_{out}) for the following logic circuit. Assume $V_{th,n} = |V_{th,p}|$ for all the NFETs and PFETs. Just a rough sketch will be accepted.

Problem #3 (Noise, 20 points)

The following shows a chain of inverters. $n_i(t)$ is a noise source and added to the signal as shown below. The range of $n_i(t)$ is $[-\frac{V_{DD}}{8}, \frac{V_{DD}}{4}]$. All the inverters have the same DC characteristics shown below. V_{in} is 0V for logic 0 and V_{DD} for logic 1. Assume that $0 < V_A \le \frac{V_{DD}}{4} \le V_B \le \frac{7V_{DD}}{8}$. Find equations and/or inequalities that V_A and V_B should satisfy to avoid signal inversion.

Problem #4 (Transistor Sizing, 10 points)

Size the transistors in the following NFET network of a static CMOS gate. R_n is the resistance of a 1X NFET. C_L is the load cap. Ignore all the parasitic capacitances. Target timing constraint: $\tau \leq R_n \cdot C_L$. Try to minimize the total area.

Area≤ 24X: 10 points. 24X<Area≤ 26X: 7 points. 26X<Area: 4 points.

- x_1 :
- x_2 :
- *x*₃:
- x_4 :
- x_5 :
- *x*₆:
- x_7 :

Problem #5 (Switching Characteristics, 15 points)

The following shows the NFET network of a logic gate designed by the static CMOS design methodology. It also shows a load capacitor C_L and three parasitic capacitors C_1 , C_2 , and C_3 . The resistance of transistor C_4 is C_4 . Assume that all the capacitors are fully charged before we discharge them.

(1) Express the fall delay as a function of R_k and C_m (k=1,...,7, m=1,2,3,L) for $(x_1,x_2,x_3,x_4,x_5,x_6,x_7)$ =(1,0,1,1,1,0,0).

(2) Express the fall delay as a function of R_k and C_m (k = 1, ..., 7, m = 1, 2, 3, L) for $(x_1, x_2, x_3, x_4, x_5, x_6, x_7) = (1, 1, 0, 0, 1, 1, 0)$.

(3) Express the fall delay as a function of R_k and C_m (k = 1, ..., 7, m = 1, 2, 3, L) for $(x_1, x_2, x_3, x_4, x_5, x_6, x_7) = (0, 1, 0, 0, 0, 0, 1)$.

Problem #6 (Memory, 10 points)

We want to design a register file having 16 64-bit registers and supporting four simultaneous accesses (i.e., we can access four different registers at the same time). Draw a 12-transistor SRAM cell supporting the four simultaneous accesses. The Wordline signals are W_0, W_1, W_2, W_3 . The four pairs of Bit-line signals are $(B_0, \overline{B_0}), (B_1, \overline{B_1}), (B_2, \overline{B_2}), (B_3, \overline{B_3})$. You should show the Word-line and Bit-line signals too in your figure.

Problem #7 (Flip-Flop, 25 points).

The following schematic shows a positive-edge-triggered D flip-flop. CK is the clock input, Q is the output, and A, B, D are signal inputs. Answer the following questions.

- (1) Express the output Q as a function of the input signals A, B, and D.
- (2) Explain how you can estimate the setup time of the FF.

(3) Explain how you can estimate the hold time of the FF.

Problem #8 (Flip-Flop, 25 points).

The following schematic shows a D flip-flop. CK is the clock input, Q is the output, and D is the data input signal. Answer the following questions.

- (1) Is it positive-edge-triggered or negative-edge-triggered?
- (2) Explain how you can estimate the setup time of the FF.

(3) Explain how you can estimate the hold time of the FF.

Problem #9 (Flip-Flop, 20 points).

Suppose a D-FF design is given (DFF1) as shown below. Now, we design a new D-FF (DFF2) using a DFF1 as follows. DFF2 has two inverters between the input pin D of DFF2 and the input pin D of DFF1. Similarly, we design a new D-FF (DFF3) using a DFF1 as shown below. Notice that users of DFF2 and DFF3 cannot see the internal designs of DFF2 and DFF3.

- Hold time and setup time of DFF1: h_1 and s_1 , respectively
- Hold time and setup time of DFF2: h₂ and s₂, respectively
- Hold time and setup time of DFF3: h₃ and s₃, respectively
- The delay of an inverter: d
- Clock period: *T* (duty cycle: 50%)
- (1) Express h_2 as a function of h_1 , s_1 , d, T.
- (2) Express s_2 as a function of h_1 , s_1 , d, T.
- (3) Express h_3 as a function of h_1 , s_1 , d, T.
- (4) Express s_3 as a function of h_1 , s_1 , d, T.