EE466

VLSI System Design

Midterm Exam

Dec. 14, 2020. (4pm - 6pm)
Instructor: Dae Hyun Kim (daehyun@eecs.wsu.edu)

Name:

WSU ID:

Problem	Points	
1	10	
2	10	
3	20	
4	10	
5	15	
6	10	
7	25	
8	25	
9	20	
Total	145	

* Allowed: Textbooks, cheat sheets, class notes, notebooks, calculators, watches
* Not allowed: Electronic devices (smart phones, tablet PCs, laptops, etc.) except calculators and watches

Problem \#1 (DC Analysis, 10 points)

Draw a DC curve ($V_{\text {in }}$ vs. $V_{\text {out }}$) for the following logic circuit. You should also show some important data points on the curve.

Problem \#2 (DC Analysis, 10 points)

Draw a DC curve ($V_{\text {in }}$ vs. $V_{\text {out }}$) for the following logic circuit. Assume $V_{t h, n}=\left|V_{t h, p}\right|$ for all the NFETs and PFETs. Just a rough sketch will be accepted.

Problem \#3 (Noise, 20 points)

The following shows a chain of inverters. $n_{i}(t)$ is a noise source and added to the signal as shown below. The range of $n_{i}(t)$ is $\left[-\frac{V_{D D}}{8}, \frac{V_{D D}}{4}\right]$. All the inverters have the same DC characteristics shown below. $V_{\text {in }}$ is $0 V$ for logic 0 and $V_{D D}$ for logic 1. Assume that $0<$ $V_{A} \leq \frac{V_{D D}}{4} \leq V_{B} \leq \frac{7 V_{D D}}{8}$. Find equations and/or inequalities that V_{A} and V_{B} should satisfy to avoid signal inversion.

Problem \#4 (Transistor Sizing, 10 points)

Size the transistors in the following NFET network of a static CMOS gate. R_{n} is the resistance of a 1X NFET. C_{L} is the load cap. Ignore all the parasitic capacitances. Target timing constraint: $\tau \leq R_{n} \cdot C_{L}$. Try to minimize the total area.

Area $\leq 24 X$: 10 points. $24 X<$ Area $\leq 26 X$: 7 points. $26 X<$ Area: 4 points.
x_{1} :
x_{2} :
x_{3} :
x_{4} :
x_{5} :
x_{6} :
x_{7} :

Problem \#5 (Switching Characteristics, 15 points)

The following shows the NFET network of a logic gate designed by the static CMOS design methodology. It also shows a load capacitor C_{L} and three parasitic capacitors C_{1}, C_{2}, and C_{3}. The resistance of transistor x_{k} is R_{k}. Assume that all the capacitors are fully charged before we discharge them.

(1) Express the fall delay as a function of R_{k} and $C_{m}(k=1, \ldots, 7, m=1,2,3, L)$ for $\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}, x_{7}\right)=(1,0,1,1,1,0,0)$.
(2) Express the fall delay as a function of R_{k} and $C_{m}(k=1, \ldots, 7, m=1,2,3, L)$ for $\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}, x_{7}\right)=(1,1,0,0,1,1,0)$.
(3) Express the fall delay as a function of R_{k} and $C_{m}(k=1, \ldots, 7, m=1,2,3, L)$ for $\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}, x_{7}\right)=(0,1,0,0,0,0,1)$.

Problem \#6 (Memory, 10 points)

We want to design a register file having 16 64-bit registers and supporting four simultaneous accesses (i.e., we can access four different registers at the same time). Draw a 12-transistor SRAM cell supporting the four simultaneous accesses. The Wordline signals are $W_{0}, W_{1}, W_{2}, W_{3}$. The four pairs of Bit-line signals are $\left(B_{0}, \overline{B_{0}}\right),\left(B_{1}, \overline{B_{1}}\right),\left(B_{2}, \overline{B_{2}}\right),\left(B_{3}, \overline{B_{3}}\right)$. You should show the Word-line and Bit-line signals too in your figure.

Problem \#7 (Flip-Flop, 25 points).

The following schematic shows a positive-edge-triggered D flip-flop. CK is the clock input, Q is the output, and A, B, D are signal inputs. Answer the following questions.

(1) Express the output Q as a function of the input signals A, B, and D.
(2) Explain how you can estimate the setup time of the FF.
(3) Explain how you can estimate the hold time of the FF.

Problem \#8 (Flip-Flop, 25 points).

The following schematic shows a D flip-flop. CK is the clock input, Q is the output, and D is the data input signal. Answer the following questions.

(1) Is it positive-edge-triggered or negative-edge-triggered?
(2) Explain how you can estimate the setup time of the FF.
(3) Explain how you can estimate the hold time of the FF.

Problem \#9 (Flip-Flop, 20 points).

Suppose a D-FF design is given (DFF1) as shown below. Now, we design a new D-FF (DFF2) using a DFF1 as follows. DFF2 has two inverters between the input pin D of DFF2 and the input pin D of DFF1. Similarly, we design a new D-FF (DFF3) using a DFF1 as shown below. Notice that users of DFF2 and DFF3 cannot see the internal designs of DFF2 and DFF3.

DFF1

DFF1

DFF2

DFF2

- Hold time and setup time of DFF1: h_{1} and s_{1}, respectively
- Hold time and setup time of DFF2: h_{2} and s_{2}, respectively
- Hold time and setup time of DFF3: h_{3} and s_{3}, respectively
- The delay of an inverter: d
- Clock period: T (duty cycle: 50\%)
(1) Express h_{2} as a function of h_{1}, s_{1}, d, T.
(2) Express s_{2} as a function of h_{1}, s_{1}, d, T.
(3) Express h_{3} as a function of h_{1}, s_{1}, d, T.
(4) Express s_{3} as a function of h_{1}, s_{1}, d, T.

