EE466

VLSI System Design

Midterm Exam 2
 Nov. 17, 2020. (4:20pm - 5:35pm)
 Instructor: Dae Hyun Kim (daehyun@eecs.wsu.edu)

Name:

WSU ID:

Problem	Points	
1	10	
2	10	
3	10	
4	10	
5	10	
Total	50	

* Allowed: Textbooks, cheat sheets, class notes, notebooks, calculators, watches
* Not allowed: Electronic devices (smart phones, tablet PCs, laptops, etc.) except calculators and watches

Problem \#1 (Static CMOS Logic, 10 points).

The following shows the PFET network of a logic gate designed by the static CMOS design methodology. Design the NFET network of the gate (i.e., draw a transistor-level schematic of the NFET network).

Problem \#2 (Static CMOS Logic, 10 points).

Design the following logic gate using the static CMOS logic design methodology.

$$
Y=(\overline{A \cdot B+C}) \cdot(D+E)
$$

Available inputs: A, B, C, D, E. Try to minimize \# TRs.
If we decompose it into $Y=X \cdot(D+E)$ and $X=\overline{A \cdot B+C}$, we need 6 TRs (for $X)+8$ TRs $($ for $Y)=14$ TRs.

We can also design it as follows. $Y=\overline{\overline{(\overline{A \cdot B+C}) \cdot(D+E)}}=\overline{(A \cdot B+C)+\overline{(D+E)}}$, which requires a two-input NOR gate (4 TRs) and then $\overline{A \cdot B+C+X}$ (8 TRs) $=12$ TRs.

Problem \#3 (Transmission Gates, 10 points).

Design the following logic gate using transmission gates (TGs).

$$
Y=(\overline{A \cdot B+C}) \cdot(D+E)
$$

Available inputs: A, B, C, D, E (and VDD and GND). Use the following symbols for the TGs.
≤ 12 TGs: 10 points. ≤ 14 TGs: 7 points. ≤ 16 TGs: 5 points. Otherwise: 3 points.

Problem \#4 (Logic Analysis, 10 points).

This logic gate is a flip-flop (D is the a input, $C K$ is a clock input, and A, B, E are some additional inputs.) Describe the functionality of the flip-flop in as much detail as possible (e.g., whether it is positive-edge-triggered, negative-edge-triggered, or dual-edge, and what A does, etc.).

If E is $0, D$ is suppressed. On the other hand, if E is 1 , the Q signal fed back to the input is suppressed.

If B is $1, A$ goes into the body of the $F F$. If B is 0 , then either D or Q (depending on E) goes into the body of the FF.

If $C K$ is $0, \mathrm{Q}$ holds the current value. When CK switches from 0 to 1 , the FF captures the input.
$=>$ Thus, this is a positive-edge-triggered $D-F / F$. If B is $1, A$ is captured. If B is 0 and E is 1 , D is captured. If B is 0 and E is 0 , it doesn't capture any input signal (so Q just holds the current value.)

Problem \#5 (Static CMOS Logic, 10 points).

This logic gate is a sequential logic (D is a data input, $C K$ is a clock input, and A, B are some additional inputs.) Describe the functionality of the gate in as much detail as possible.

If A is $0, B$ is fed into the body. If A is $1, D$ is fed into the body. Thus, A is like an input signal selector.

Suppose A is 1 . Then, $n 2$ is 1 and $n 1$ is \bar{D}, so $n 3$ is D. Similarly, if A is $0, n 3$ will be B.
If $C K$ is $0, n 4$ is 1 and $n 5$ is \bar{Q}, so $Q=Q$, i.e., Q holds the current value. If $C K$ is $1, n 4$ is $\overline{n 3}$ and $n 5$ is 1 , so $\mathrm{Q}=\overline{n 4}=n 3$, which is either B or D depending on A .

Thus, this is a positive latch (i.e., positive level-sensitive latch) with a signal selector A. If A is $0, Q=B$ when $C K=h i g h$. If A is $1, Q=D$ when $C K=h i g h$. If $C K=$ low, Q holds the current value.

