
EE234

Microprocessor Systems

Final Exam

Dec. 15, 2020. (11am – 1:30pm)

Instructor: Dae Hyun Kim (daehyun@eecs.wsu.edu)

 Name:

 WSU ID:

Problem Points
1 20
2 20
3 30
4 20

5-1 20
5-2 30
6 20

Total 160

mailto:daehyun@eecs.wsu.edu

Problem 1 (1-D Array, 20 points)

All the registers R# are 32-bit registers. “int” is a 32-bit signed integer data type. Write
an assembly code for the “for” loop in the following C code. The memory figure shows
the stack pointer (SP) and the locations of the variables x and y.

MOV R0, #0 // k
loop1:
 CMP R0, #10
 BGE finish
 MUL R1, R0, #4 // 4*k
 ADD R2, R1, SP
 LDR R2, [R2, #12] // R2 = y[k]
 LDR R3, [SP, #4] // x
 ADD R3, R3, R1 // &(x[k])
 STR R2, [R3] // x[k] = R2 = y[k]
 ADD R0, R0, #1
 B loop1
finish:

Problem 2 (1-D Array, 20 points)

All the registers R# are 32-bit registers. “long” is a 64-bit signed integer data type. Write
an assembly code for the “for” loop in the following C code. The memory figure shows
the stack pointer (SP) and the locations of the variables x and y.

MOV R0, #0 // k
loop1:
 CMP R0, #10
 BGE finish
 MUL R1, R0, #8 // 8*k
 ADD R2, R1, SP
 LDR R2, [R2, #12] // R2 = LO(y[k]) LO is the lower 4B.
 LDR R3, [R2, #16] // R3 = HI(y[k]) HO is the upper 4B.
 LDR R4, [SP, #4] // x
 ADD R4, R4, R1 // &(LO(x[k]))
 STR R2, [R4] // LO(x[k]) = R2 = LO(y[k])
 STR R3, [R4, #4] // HI(x[k]) = R3 = HI(y[k])
 ADD R0, R0, #1
 B loop1
finish:

Problem 3 (2-D Array, 20 points)

All the registers R# are 32-bit registers. “int” is a 32-bit signed integer data type. Write
an assembly code for the nested “for” loop in the following C code. The memory figure
shows the stack pointer (SP) and the locations of the variables x and y.

Note: Try to minimize the number of memory access instructions (LDR, STR) executed.
However, you should strictly follow the flow of the program (i.e., you should have two nested
loops, etc.).

 MOV R0, #0 // int i = 0
 MOV R12, #0 // constant 0
 LDR R3, [SP, #4] // x
loop1:
 CMP R0, #2
 BGE finish
 MUL R2, R0, #4 // 4*i
 ADD R4, R2, R3 // &(x[i])
 LDR R4, [R4] // x[i]
 MOV R1, #0 // int k = 0
loop2:
 CMP R1, #4
 BGE loop3
 MUL R2, R2, #4 // 4*k
 ADD R4, R4, R2 // &(x[i][k])
 STR R12, [R4] // x[i][k] = 0
 ADD R1, R1, #1
 B loop2
loop3:
 ADD R0, R0, #1 // i++
 B loop1
finish:

Problem 4 (Estimation of Memory Consumption, 20 points)

Estimate how many bytes are used for the array x in the following C code. You should
include the memory space used for variable x itself. “int” is a 32-bit signed integer data
type.

x needs 4B.

The first “new” operation reserves 3 int*** spaces → 3*4B=12B.

The first “for” loop reserves 4 int** spaces for each x[k] → 3*(4*4B) = 48B.

In the nested “for” loop, the “if” statement is executed six times. In the “if” statement, the “new”
statement reserves 5 int* spaces → 6*(5*4B) = 120B.

In the “for” loop in the “if” statement, the “new” operation reserves 6 int spaces. → 6*(3*(6*4B))
= 432B.

Thus, total 616 Bytes.

Problem 5-1 (Array Manipulation I, 20 points)

The “char” data type in C is used to represent 1 byte. If you need an array of 𝑀𝑀 char-
type variables, you will ideally need 𝑀𝑀 bytes. However, all the memory addresses for
LDR and STR instructions should be integer multiples of 4 in the 32-bit ARM
architecture (so, for example, you cannot use 0x0001 for a target memory address).
Now, let’s take a look at the following C code. It reserves memory space for 80
characters, so ideally it should reserve 80 Bytes in the heap memory. However, it
requires some bit manipulations. Thus, a compiler can reserve 320 Bytes in the heap
memory and use only the lease significant 1B in each word for each x[k] as follows.

Write an assembly code for the “for” loop in the C code shown above. The memory
management should be the same as the compiler above.

 LDR R0, [SP, #4] // R0 = x
 MOV R1, #0 // k = 0
loop1:
 CMP R1, #80
 BGE finish
 MUL R2, R1, #4 // 4*k
 ADD R2, R0, R2 // &(x[k])
 STR R1, [R2] // x[k] = k
 ADD R1, R1, #1
 B loop1
finish:

Problem 5-2 (Array Manipulation II, 30 points)

For the C code in Problem 5-1, a different compiler reserves exactly 80 Bytes in the
heap space as follows.

Write an assembly code for the “for” loop in the C code shown above. The memory
management should be the same as the new compiler explained above.

 LDR R0, [SP, #4] // R0 = x
 MOV R1, #0 // k = 0
loop1:
 CMP R1, #80
 BGE finish
 MOV R2, R1, LSR #2 // k/4
 MUL R2, R2, #4 // 4*(k/4)
 ADD R2, R0, R2
 LDR R3, [R2] // load x[a+3:a]
 AND R4, R1, #0x3 // k%4
 MUL R4, R4, #8 // # bits to shift to the left
 MOV R5, R1, LSL R4 // shift k to the left
 MOV R6, #0xFF
 MOV R6, R6, LSL R4 // shift 000...011111111 to the left
 LDR R7, =#0xFFFFFFFF
 EOR R6, R6, R7 // inversion of R6
 AND R6, R3, R6 // finally we get x[a+3] x[a+2] 00000000 x[a] (assuming x[a+1]=k)
 ORR R6, R6, R5 // x[a+3] x[a+2] k x[a]
 STR R6, [R2]
 ADD R1, R1, #1 // k++
 B loop1
finish:

Problem 6 (C, 20 points)

All the registers R# are 32-bit registers. “int” is a 32-bit signed integer data type and
“long” is a 64-bit signed integer data type. The following table shows the main memory.

“a” and “b” are some constants. Currently, the value
of x is 0x4000 as shown in the figure.

(a) What is the value of *((int*) x)? 0x400C

(b) What is the value of *((long*) x)? 0x4014 400C

(c) What is the value of x[2]? 0x4024

(d) What is the value of x + 3? 0x400C

(e) What is the value of (x[0]+2)? 0x4014

(f) What is the value of x[1][2]? 0x4020

(g) int* y = x[1]. What is the value of y[3]? 0x4024

(h) long** y = (long**) x. What is the value of y[1]?
0x4014

(i) What is the value of &(x[2])? 0x4008

(j) long* y = (long*) x[0]. What is the value of y[1]? 0x401C 4018

