
EE234

Microprocessor Systems

Final Exam

Dec. 15, 2020. (11am – 1:30pm)

Instructor: Dae Hyun Kim (daehyun@eecs.wsu.edu)

 Name:

 WSU ID:

Problem Points
1 20
2 20
3 30
4 20

5-1 20
5-2 30
6 20

Total 160

mailto:daehyun@eecs.wsu.edu

Problem 1 (1-D Array, 20 points)

All the registers R# are 32-bit registers. “int” is a 32-bit signed integer data type. Write
an assembly code for the “for” loop in the following C code. The memory figure shows
the stack pointer (SP) and the locations of the variables x and y.

Problem 2 (1-D Array, 20 points)

All the registers R# are 32-bit registers. “long” is a 64-bit signed integer data type. Write
an assembly code for the “for” loop in the following C code. The memory figure shows
the stack pointer (SP) and the locations of the variables x and y.

Problem 3 (2-D Array, 30 points)

All the registers R# are 32-bit registers. “int” is a 32-bit signed integer data type. Write
an assembly code for the nested “for” loop in the following C code. The memory figure
shows the stack pointer (SP) and the locations of the variables x and y.

Note: Try to minimize the number of memory access instructions (LDR, STR) executed.
However, you should strictly follow the flow of the program (i.e., you should have two nested
loops, etc.).

Problem 4 (Estimation of Memory Consumption, 20 points)

Estimate how many bytes are used for the array x in the following C code. You should
include the memory space used for variable x itself. “int” is a 32-bit signed integer data
type.

Problem 5-1 (Array Manipulation I, 20 points)

The “char” data type in C is used to represent 1 byte. If you need an array of 𝑀𝑀 char-
type variables, you will ideally need 𝑀𝑀 bytes. However, all the memory addresses for
LDR and STR instructions should be integer multiples of 4 in the 32-bit ARM
architecture (so, for example, you cannot use 0x0001 for a target memory address).
Now, let’s take a look at the following C code. It reserves memory space for 80
characters, so ideally it should reserve 80 Bytes in the heap memory. However, it
requires some bit manipulations. Thus, a compiler can reserve 320 Bytes in the heap
memory and use only the lease significant 1B in each word for each x[k] as follows.

Write an assembly code for the “for” loop in the C code shown above. The memory
management should be the same as the compiler above.

Problem 5-2 (Array Manipulation II, 30 points)

For the C code in Problem 5-1, a different compiler reserves exactly 80 Bytes in the
heap space as follows.

Write an assembly code for the “for” loop in the C code shown above. The memory
management should be the same as the new compiler explained above.

Note: If you know what to do, but don’t know how to implement it, you can just explain (in
English) what you should do to implement the above C code (to get some partial credit).

Problem 6 (C, 20 points)

All the registers R# are 32-bit registers. “int” is a 32-bit signed integer data type and
“long” is a 64-bit signed integer data type. The following table shows the main memory.

“a” and “b” are some constants. Currently, the value
of x is 0x4000 as shown in the figure.

(a) What is the value of *((int*) x)?

(b) What is the value of *((long*) x)?

(c) What is the value of x[2]?

(d) What is the value of x + 3?

(e) What is the value of (x[0]+2)?

(f) What is the value of x[1][2]?

(g) int* y = x[1]. What is the value of y[2]?

(h) long** y = (long**) x. What is the value of y[1]?

(i) What is the value of &(x[2])?

(j) long* y = (long*) x[0]. What is the value of y[1]?

Assembly Instructions
R# is a register. (# = 0 ~ 12)

Instruction Meaning

INV Rd

Bitwise inversion.
Before 0 0 0 0 1 1 0 0
After 1 1 1 1 0 0 1 1

AND Rd, Ra, Rb
AND Rd, Ra, #imm
AND Rd, #imm

Bitwise AND. (Rd = Ra AND Rb), (Rd = Ra AND #imm), (Rd = Rd AND #imm)
Ra 0 0 0 0 1 1 1 1
Rb 1 1 1 1 0 1 1 1

Rd 0 0 0 0 0 1 1 1

OR Rd, Ra, Rb
OR Rd, Ra, #imm
OR Rd, #imm

Bitwise OR. (Rd = Ra OR Rb), (Rd = Ra OR #imm), (Rd = Rd OR #imm).
Ra 0 0 0 0 1 1 0 0
Rb 1 1 0 1 0 0 1 0

Rd 1 1 0 1 1 1 1 0

EOR Rd, Ra, Rb
EOR Rd, Ra, #imm
EOR Rd, #imm

Bitwise exclusive-OR. (Rd = Ra ⊕ Rb), (Rd = Ra ⊕ #imm), (Rd = Rd ⊕ #imm)
Ra 0 1 0 1 0 1 0 1
Rb 1 1 0 1 0 0 1 0

Rd 1 0 0 0 0 1 1 1

LSR Rd, Ra, #imm
LSR Rd, #imm

Logical shift right by (#imm) bits. (Rd = Rd >> #imm), (Rd = Rd >> #imm)
Ex) #imm = 3

Before 1 0 0 0 1 1 0 1
After 0 0 0 1 0 0 0 1

LSL Rd, Ra, #imm
LSL Rd, #imm

Logical shift left by (#imm) bits. (Rd = Ra << #imm), (Rd = Rd << #imm)
Ex) #imm = 3

Before 1 0 0 0 1 1 0 1
After 0 1 1 0 1 0 0 0

MOV Rd, Ra
MOV Rd, #imm

Rd = Ra
Rd = #imm

ADD Rd, Ra, Rb
ADD Rd, Ra, #imm
ADD Rd, #imm

Rd = Ra + Rb
Rd = Ra + #imm
Rd = Rd + #imm

SUB Rd, Ra, Rb
SUB Rd, Ra, #imm
SUB Rd, #imm

Rd = Ra - Rb
Rd = Ra - #imm
Rd = Rd - #imm

MUL Rd, Ra, Rb
MUL Rd, Ra, #imm

Rd = Ra * Rb
Rd = Ra * (#imm)

CMP Rd, #imm
CMP Rd, Ra

Set Z = 1 if Rd == #imm. Otherwise, Z = 0. (Z is the Zero field of the CPSR.)
Set Z = 1 if Rd == Ra. Otherwise, Z = 0.
Notice that N != V is Rd < #imm or Rd < Ra.

BEQ [addr] Branch to [addr] if Z = 1. Ex) CMP R1, R2. BEQ tar → Go to tar if R1 == R2.
BNE [addr] Branch to [addr] if Z = 0. Ex) CMP R1, R2. BNE tar → Go to tar if R1 != R2.
BLT [addr] Branch to [addr] if N != V. Ex) CMP R1, R2. BLT tar → Go to tar if R1 < R2.
LDR Rd, [Ra, #imm] Load the data stored at [Ra + #imm] to Rd.
STR Rd, [Ra, #imm] Store the data stored in Rd to [Ra + #imm].

