
EE234

Microprocessor Systems

Midterm Exam

Oct. 14, 2020. (2:10pm – 3pm)

Instructor: Dae Hyun Kim (daehyun@eecs.wsu.edu)

 Name:

 WSU ID:

Problem Points
1 10
2 10
3 10
4 10
5 10
6 10
7 20

Total 80

mailto:daehyun@eecs.wsu.edu

Problem #1 (Bit manipulation, 10 points)

Suppose R# is an 8-bit register. The data stored in R# is treated as an unsigned binary
number. The following instruction performs an arithmetic operation. Explain what it does
(i.e., briefly explain the meaning of the data stored in R2 in terms of arithmetic
operations) or draw a graph of (R1 vs. R2). Here, “arithmetic” means something like
addition, subtraction, multiplication, division (quotient), division (remainder), square root,
transcendental functions, etc.

EOR R2, R1, #0x03

Input: 𝑥𝑥7𝑥𝑥6𝑥𝑥5𝑥𝑥4𝑥𝑥3𝑥𝑥2𝑥𝑥1𝑥𝑥0

Output: 𝑥𝑥7𝑥𝑥6𝑥𝑥5𝑥𝑥4𝑥𝑥3𝑥𝑥2𝑥𝑥1���𝑥𝑥0���

Answer: Suppose 𝑋𝑋 and 𝑌𝑌 are the values in R1 and R2, respectively.

If 𝑋𝑋 = 4𝑛𝑛 (where 𝑛𝑛 is an integer), 𝑌𝑌 = 4𝑛𝑛 + 3.

If 𝑋𝑋 = 4𝑛𝑛 + 1, 𝑌𝑌 = 4𝑛𝑛 + 2.

If 𝑋𝑋 = 4𝑛𝑛 + 2, 𝑌𝑌 = 4𝑛𝑛 + 1.

If 𝑋𝑋 = 4𝑛𝑛 + 3, 𝑌𝑌 = 4𝑛𝑛.

Well, if you want to combine all the cases into one formula, it could be

𝑌𝑌 = 𝑋𝑋 + (3 − (𝑋𝑋%4))

where % is the MOD operation.

Problem #2 (Bit manipulation, 10 points)

Suppose R# is an 8-bit register. The data stored in R# is treated as an unsigned binary
number. The following instruction performs an arithmetic operation. Explain what it does
(i.e., briefly explain the meaning of the data stored in R2 in terms of arithmetic
operations) or draw a graph of (R1 vs. R2). Here, “arithmetic” means something like
addition, subtraction, multiplication, division (quotient), division (remainder), square root,
transcendental functions, etc.

OR R2, R1, #0x80

Input: 𝑥𝑥7𝑥𝑥6𝑥𝑥5𝑥𝑥4𝑥𝑥3𝑥𝑥2𝑥𝑥1𝑥𝑥0

Output: 1𝑥𝑥6𝑥𝑥5𝑥𝑥4𝑥𝑥3𝑥𝑥2𝑥𝑥1𝑥𝑥0

Answer: Suppose 𝑋𝑋 and 𝑌𝑌 are the values in R1 and R2, respectively.

If 𝑋𝑋 < 128 (i.e., 𝑥𝑥7 = 0), 𝑌𝑌 = 128 + 𝑋𝑋.

If 𝑋𝑋 ≥ 128 (i.e., 𝑥𝑥7 = 1), 𝑌𝑌 = 𝑋𝑋.

Problem #3 (Bit manipulation, 10 points)

Suppose R# is an 8-bit register. R1 (𝑥𝑥7 𝑥𝑥6 𝑥𝑥5 𝑥𝑥4 𝑥𝑥3 𝑥𝑥2 𝑥𝑥1 𝑥𝑥0) has an input data. We want
to generate the following signal from R1.

R2 = (𝑥𝑥7 𝑥𝑥6��� 1 0 𝑥𝑥3 𝑥𝑥2��� 1 0)

Use the instructions in the instruction sheet to generate R2. Try to minimize #
instructions you use.

EOR R2, R1, #0x44 // 𝑥𝑥7 𝑥𝑥6��� 𝑥𝑥5 𝑥𝑥4 𝑥𝑥3 𝑥𝑥2��� 𝑥𝑥1 𝑥𝑥0

AND R2, R2, #0xEE // 𝑥𝑥7 𝑥𝑥6��� 𝑥𝑥5 0 𝑥𝑥3 𝑥𝑥2��� 𝑥𝑥1 0

OR R2, R2, #0x22 // 𝑥𝑥7 𝑥𝑥6��� 1 0 𝑥𝑥3 𝑥𝑥2��� 1 0

Problem #4 (Bit manipulation, 10 points)

Suppose R# is an 8-bit register. R1 (𝑥𝑥7 𝑥𝑥6 𝑥𝑥5 𝑥𝑥4 𝑥𝑥3 𝑥𝑥2 𝑥𝑥1 𝑥𝑥0) has an input data. We want
to generate the following signal from R1.

R2 = (𝑥𝑥3 𝑥𝑥2 𝑥𝑥1 𝑥𝑥0 𝑥𝑥7 𝑥𝑥6 𝑥𝑥5 𝑥𝑥4)

Use the instructions in the instruction sheet to generate R2. Use only R1 and R2 (i.e.,
don’t use any other registers.) You don’t need to preserve the input data. Try to
minimize # instructions you use. (≤3 instructions: 10 points, 4 instructions: 5 points, ≥5
instructions: 2 points)

LSL R2, R1, #4 // R1 (𝑥𝑥7 𝑥𝑥6 𝑥𝑥5 𝑥𝑥4 𝑥𝑥3 𝑥𝑥2 𝑥𝑥1 𝑥𝑥0), R2 (𝑥𝑥3 𝑥𝑥2 𝑥𝑥1 𝑥𝑥0 0 0 0 0)

LSR R1, R1, #4 // R1 (0 0 0 0 𝑥𝑥7 𝑥𝑥6 𝑥𝑥5 𝑥𝑥4), R2 (𝑥𝑥3 𝑥𝑥2 𝑥𝑥1 𝑥𝑥0 0 0 0 0)

OR R2, R1, R2 // R2 (𝑥𝑥3 𝑥𝑥2 𝑥𝑥1 𝑥𝑥0 𝑥𝑥7 𝑥𝑥6 𝑥𝑥5 𝑥𝑥4)

Problem #5 (ARM assembly, 10 points)

What is the value of the data stored in R2 when the program ends?

R1: 𝑥𝑥7 𝑥𝑥6 … 𝑥𝑥0.

MOV R3, R1: R3 = 𝑥𝑥7 𝑥𝑥6 … 𝑥𝑥0

AND R4, R3, #0x01: R4 = 0 0 0 0 0 0 0 𝑥𝑥0

LSR R3, R3, #1: R3 = 0 𝑥𝑥7 … 𝑥𝑥1

AND R4, R4, R3: R4 = 0 0 0 0 0 0 0 (𝑥𝑥0&𝑥𝑥1)

LSR R3, R3, #1: R3 = 0 0 𝑥𝑥7 … 𝑥𝑥2

AND R4, R4, R3: R4 = 0 0 0 0 0 0 0 (𝑥𝑥0&𝑥𝑥1&𝑥𝑥2)

ADD R2, R2, R4: R2 is increased by 1 whenever 𝑥𝑥0 = 1, 𝑥𝑥1 = 1, 𝑥𝑥2 = 1.

How many times? 32 (from 𝑥𝑥7 … 𝑥𝑥3 = 00000 to 𝑥𝑥7 … 𝑥𝑥3 = 11111).

Thus, R2 will have 32.

This code counts # integers in the form of 8𝑛𝑛 + 7 between 1 and 255.

Problem #6 (ARM assembly, 10 points)

What is the value of the data stored in R2 when the program ends?

R4 = 1, R3 = 3, R1 = 1, R2 = 1, R3 != 10

R4 = 2, R3 = 4, R1 = 1, R2 = 2, R3 != 10

R4 = 3, R3 = 5, R1 = 2, R2 = 3, R3 != 10

R4 = 5, R3 = 6, R1 = 3, R2 = 5, R3 != 10

R4 = 8, R3 = 7, R1 = 5, R2 = 8, R3 != 10

R4 = 13, R3 = 8, R1 = 8, R2 = 13, R3 != 10

R4 = 21, R3 = 9, R1 = 13, R2 = 21, R3 != 10

R4 = 34, R3 = 10, R1 = 21, R2 = 34, R3 == 10

Thus, R2 has 34.

This code calculates the 10th element of the Fibonacci sequence (𝑋𝑋𝑛𝑛+2 = 𝑋𝑋𝑛𝑛+1 + 𝑋𝑋𝑛𝑛 with
𝑋𝑋1 = 0 and 𝑋𝑋2 = 1).

Problem #7 (ARM assembly, 20 points)

Let’s use the 32-bit ARM architecture, i.e., R# is a 32-bit register and the register file
has 16 registers (you can use R0~R12 only). R0 has a positive number (given to you).
We want to check whether the number in R0 is an integer multiple of 3 (i.e., 3𝑛𝑛) or not. If
it is, we set R1 to 1. If not, we set R1 to 0. Here is an algorithm for that.

1) If R0 is 0, R1 = 1. Done.

2) If R0 is 1, R1 = 0. Done.

3) If R0 is 2, R1 = 0. Done.

4) If not (i.e., R0 ≥ 3), subtract 3 from R0 (i.e., R0 = R0 – 3).

5) Go back to 1).

Write an assembly code running the above algorithm. Use only the instructions shown
in the instruction sheet (but do not use LDR and STR). The performance of the code
doesn’t matter as long as the code works.

