
EE234

Microprocessor Systems

Midterm Exam

Oct. 14, 2020. (2:10pm – 3pm)

Instructor: Dae Hyun Kim (daehyun@eecs.wsu.edu)

 Name:

 WSU ID:

Problem Points
1 10
2 10
3 10
4 10
5 10
6 10
7 20

Total 80

mailto:daehyun@eecs.wsu.edu

Problem #1 (Bit manipulation, 10 points)

Suppose R# is an 8-bit register. The data stored in R# is treated as an unsigned binary
number. The following instruction performs an arithmetic operation. Explain what it does
(i.e., briefly explain the meaning of the data stored in R2 in terms of arithmetic
operations) or draw a graph of (R1 vs. R2). Here, “arithmetic” means something like
addition, subtraction, multiplication, division (quotient), division (remainder), square root,
transcendental functions, etc.

EOR R2, R1, #0x03

Problem #2 (Bit manipulation, 10 points)

Suppose R# is an 8-bit register. The data stored in R# is treated as an unsigned binary
number. The following instruction performs an arithmetic operation. Explain what it does
(i.e., briefly explain the meaning of the data stored in R2 in terms of arithmetic
operations) or draw a graph of (R1 vs. R2). Here, “arithmetic” means something like
addition, subtraction, multiplication, division (quotient), division (remainder), square root,
transcendental functions, etc.

OR R2, R1, #0x80

Problem #3 (Bit manipulation, 10 points)

Suppose R# is an 8-bit register. R1 (𝑥𝑥7 𝑥𝑥6 𝑥𝑥5 𝑥𝑥4 𝑥𝑥3 𝑥𝑥2 𝑥𝑥1 𝑥𝑥0) has an input data. We want
to generate the following signal from R1.

R2 = (𝑥𝑥7 𝑥𝑥6��� 1 0 𝑥𝑥3 𝑥𝑥2��� 1 0)

Use the instructions in the instruction sheet to generate R2. Try to minimize #
instructions you use. (≤3 instructions: 10 points, 4 instructions: 5 points, ≥5 instructions:
2 points)

Problem #4 (Bit manipulation, 10 points)

Suppose R# is an 8-bit register. R1 (𝑥𝑥7 𝑥𝑥6 𝑥𝑥5 𝑥𝑥4 𝑥𝑥3 𝑥𝑥2 𝑥𝑥1 𝑥𝑥0) has an input data. We want
to generate the following signal from R1.

R2 = (𝑥𝑥3 𝑥𝑥2 𝑥𝑥1 𝑥𝑥0 𝑥𝑥7 𝑥𝑥6 𝑥𝑥5 𝑥𝑥4)

Use the instructions in the instruction sheet to generate R2. Use only R1 and R2 (i.e.,
don’t use any other registers.) You don’t need to preserve the input data. Try to
minimize # instructions you use. (≤3 instructions: 10 points, 4 instructions: 5 points, ≥5
instructions: 2 points)

Problem #5 (ARM assembly, 10 points)

What is the value of the data stored in R2 when the program ends?

Problem #6 (ARM assembly, 10 points)

What is the value of the data stored in R2 when the program ends?

Problem #7 (ARM assembly, 20 points)

Let’s use the 32-bit ARM architecture, i.e., R# is a 32-bit register and the register file
has 16 registers (you can use R0~R12 only). R0 has a positive number (given to you).
We want to check whether the number in R0 is an integer multiple of 3 (i.e., 3𝑛𝑛) or not. If
it is, we set R1 to 1. If not, we set R1 to 0. Here is an algorithm for that.

1) If R0 is 0, R1 = 1. Done.

2) If R0 is 1, R1 = 0. Done.

3) If R0 is 2, R1 = 0. Done.

4) If not (i.e., R0 ≥ 3), subtract 3 from R0 (i.e., R0 = R0 – 3).

5) Go back to 1).

Write an assembly code running the above algorithm. Use only the instructions shown
in the instruction sheet (but do not use LDR and STR). The performance of the code
doesn’t matter as long as the code works.

Assembly Instructions

R# is a register. (# = 0 ~ 12)

Instruction Meaning

INV Rd

Bitwise inversion.
Before 0 0 0 0 1 1 0 0
After 1 1 1 1 0 0 1 1

AND Rd, Ra, Rb
AND Rd, Ra, #imm
AND Rd, #imm

Bitwise AND. (Rd = Ra AND Rb), (Rd = Ra AND #imm), (Rd = Rd AND #imm)
Ra 0 0 0 0 1 1 1 1
Rb 1 1 1 1 0 1 1 1

Rd 0 0 0 0 0 1 1 1

OR Rd, Ra, Rb
OR Rd, Ra, #imm
OR Rd, #imm

Bitwise OR. (Rd = Ra OR Rb), (Rd = Ra OR #imm), (Rd = Rd OR #imm).
Ra 0 0 0 0 1 1 0 0
Rb 1 1 0 1 0 0 1 0

Rd 1 1 0 1 1 1 1 0

EOR Rd, Ra, Rb
EOR Rd, Ra, #imm
EOR Rd, #imm

Bitwise exclusive-OR. (Rd = Ra ⊕ Rb), (Rd = Ra ⊕ #imm), (Rd = Rd ⊕ #imm)
Ra 0 1 0 1 0 1 0 1
Rb 1 1 0 1 0 0 1 0

Rd 1 0 0 0 0 1 1 1

LSR Rd, Ra, #imm
LSR Rd, #imm

Logical shift right by (#imm) bits. (Rd = Rd >> #imm), (Rd = Rd >> #imm)
Ex) #imm = 3

Before 1 0 0 0 1 1 0 1
After 0 0 0 1 0 0 0 1

LSL Rd, Ra, #imm
LSL Rd, #imm

Logical shift left by (#imm) bits. (Rd = Ra << #imm), (Rd = Rd << #imm)
Ex) #imm = 3

Before 1 0 0 0 1 1 0 1
After 0 1 1 0 1 0 0 0

MOV Rd, Ra
MOV Rd, #imm

(Rd = Ra)
(Rd = #imm)

ADD Rd, Ra, Rb
ADD Rd, Ra, #imm
ADD Rd, #imm

(Rd = Ra + Rb)
(Rd = Ra + #imm)
(Rd = Rd + #imm)

SUB Rd, Ra, Rb
SUB Rd, Ra, #imm
SUB Rd, #imm

(Rd = Ra - Rb)
(Rd = Ra - #imm)
(Rd = Rd - #imm)

CMP Rd, #imm
CMP Rd, Ra

Set Z = 1 if Rd == #imm. Otherwise, Z = 0. (Z is the Zero field of the CPSR.)
Set Z = 1 if Rd == Ra. Otherwise, Z = 0.
Notice that N != V is Rd < #imm or Rd < Ra.

BEQ [addr] Branch to [addr] if Z = 1. Ex) CMP R1, R2. BEQ tar → Go to tar if R1 == R2.
BNE [addr] Branch to [addr] if Z = 0. Ex) CMP R1, R2. BNE tar → Go to tar if R1 != R2.
BLT [addr] Branch to [addr] if N != V. Ex) CMP R1, R2. BLT tar → Go to tar if R1 < R2.
LDR Rd, [Ra, #imm] Load the data stored at [Ra + #imm] to Rd.
STR Rd, [Ra, #imm] Store the data stored in Rd to [Ra + #imm].

