
EE234 

Microprocessor Systems 

 

Final Exam 

Dec. 15, 2021. (1:10pm – 4pm) 

Instructor: Dae Hyun Kim (daehyun@eecs.wsu.edu) 

 

       Name: 

       WSU ID: 

 

Problem Points  
1 20  
2 20  
3 20  
4 30  
5 30  
6 20  

Total 140  
 

 

 

 

 

 

 

 

 

mailto:daehyun@eecs.wsu.edu


Problem #1 (1-D Array, 20 points) 

All the registers are 32-bit registers. “int” is a 32-bit signed integer data type. Write an 
assembly code for the following C code and the given variables. 

Variables (both x and y are static arrays.) 

• int x[5]; 
• int y[7]; 
• &(x[0]) = SP + 4 
• &(y[0]) = SP + 40 

C code 

 

(You can use any of R0~R12 for the variable k.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Problem #2 (1-D Array, 20 points) 

All the registers are 32-bit registers. “int” is a 32-bit signed integer data type. Write an 
assembly code for the following C code and the given variables. 

Variables (x is a static array and y is a dynamic array.) 

• int x[5]; 
• int* y = new int[7]; 
• &(x[0]) = SP + 4 
• &y = SP + 40 

C code 

 

(You can use any of R0~R12 for the variable k.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Problem #3 (1-D Array, 20 points) 

All the registers are 32-bit registers. “int” is a 32-bit signed integer data type. The 
following shows a structure definition and how a C/C++ compiler stores the member 
variables of a structure variable of the data type “Item”. (Notice that the physical 
addresses shown in the figure don’t matter. I am just showing the relative locations of 
the member variables in the figure.) 

 

We declare a static array “x” of 10 Item variables as follows: 

Item x[10]; 

Answer the questions below using the following information: 

• &(x[3].phone) = 0x0460 

 

(1) What is the address of x[5].car? (5 points) 

 

(2) What is the value of &(x[6].laptop)? (5 points) 

 

(3) Is it possible to find the value of x[0].phone from the given information? If yes, what 
is the value of x[0].phone? If not, just say “not possible”. (5 points) 

 

(4) Is it possible to find the value of the stack pointer register (SP) from the given 
information? If yes, what is the value of SP? If no, just say “not possible”. (5 points) 

 

 

 



Problem #4 (Pointer, 30 points) 

All the registers are 32-bit registers. “unsigned int” is a 32-bit unsigned integer data type 
and “unsigned long” is a 64-bit unsigned integer data type. The following shows how an 
“unsigned long” variable x is stored in the main memory. The “LO” is the lower 32 bits 
and the “HI” is the upper 32 bits. The following figure shows how the LO and HI parts of 
an unsigned long variable are stored in the main memory. (Notice that the physical 
addresses shown in the figure don’t matter. I am just showing the relative locations of 
the LO and HI parts.) 

 

Answer the questions below using the following information and the given memory map: 

• unsigned int x; 
• unsigned long* y; 
• SP: 0x7FF0 
• &x: SP + 0x0010 
• &y: SP + 0x0018 

(1) What is the value of x? 

(2) What is the value of y? 

(3) What is the address of x? 

(4) What is the address of y? 

(5) What is the value of *((unsigned int*) x)? 

(6) What is the value of *y? 

(7) What is the value of *((unsigned int*) y)? 

 

unsigned int* k = (unsigned int*) x; 

(8) What is the value of k[0]? 

(9) What is the value of k[4]? 



(10) What is the value of k+5? 

 

unsigned long* p = (unsigned long*) x; 

(11) What is the value of p? 

(12) What is the value of p+2? 

(13) What is the value of p[3]? 

 

x = x + 16; 

unsigned int* w = (unsigned int*) x; 

(14) What is the value of *w? 

(15) What is the value of w[1]? 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Problem #5 (1-D Array, 30 points) 

All the registers are 32-bit registers. “unsigned long” is a 64-bit unsigned integer data 
type and “unsigned char” is an 8-bit unsigned character data type. Write an assembly 
code for the following C code and the given variables. 

Variables (both x and y are static arrays.) 

• unsigned char x[8]; 
• unsigned long y[8]; 
• &(x[0]) = SP + 8 
• &(y[0]) = SP + 80 
• The memory map shows how “unsigned char” variables are 

stored in the main memory. 

C code 

 

(You can use any of R0~R12 for the variable k. You don’t need to optimize the code.) 

 

 

 

 

 

 

 

 

 

 

 

 

 



Problem #6 (Pointer, 20 points) 

All the registers are 32-bit registers. “bool” is a 1-bit data type storing either 0 or 1. Write 
an assembly code for the following C code and the given variables. 

Variables (both x and y are static arrays.) 

• bool x[8]; 
• unsigned int y[8]; 
• &(x[0]) = SP + 8 
• &(y[0]) = SP + 80 
• The memory map shows how a “bool” array is stored in the 

main memory. x[i] is either 0x00 or 0x01. 

C code 

 

(You can use any of R0~R12 for the variable k. You don’t need to optimize the code.) 

 

 

 

 

 

 

 

 

 

 

 



Assembly Instructions 
R# is a register. (# = 0 ~ 12) 

Instruction Meaning 

MVN  Rd, Ra 

Bitwise inversion (Rd = NOT Ra). 
Before 0 0 0 0 1 1 0 0 
After 1 1 1 1 0 0 1 1 

  

AND Rd, Ra, Rb 
AND Rd, Ra, #imm 
AND Rd, #imm 

Bitwise AND. (Rd = Ra AND Rb), (Rd = Ra AND #imm), (Rd = Rd AND #imm) 
Ra 0 0 0 0 1 1 1 1 
Rb 1 1 1 1 0 1 1 1 
         

Rd 0 0 0 0 0 1 1 1 
  

OR Rd, Ra, Rb 
OR Rd, Ra, #imm 
OR Rd, #imm 

Bitwise OR. (Rd = Ra OR Rb), (Rd = Ra OR #imm), (Rd = Rd OR #imm). 
Ra 0 0 0 0 1 1 0 0 
Rb 1 1 0 1 0 0 1 0 
         

Rd 1 1 0 1 1 1 1 0 
  

EOR Rd, Ra, Rb 
EOR Rd, Ra, #imm 
EOR Rd, #imm 

Bitwise exclusive-OR. (Rd = Ra ⊕ Rb), (Rd = Ra ⊕ #imm), (Rd = Rd ⊕ 
#imm) 

Ra 0 1 0 1 0 1 0 1 
Rb 1 1 0 1 0 0 1 0 
         

Rd 1 0 0 0 0 1 1 1 
  

MOV Rd, Ra 
MOV Rd, #imm 
MOV Rd, Ra, LSR #imm 
MOV Rd, Ra, LSR Rx 
MOV Rd, Ra, LSL #imm 
MOV Rd, Ra, LSL Rx 

Rd = Ra 
Rd = #imm 
Rd = (Ra >> #imm) 
Rd = (Ra >> Rx) where Rx has the # bits to shift Ra to the right. 
Rd = (Ra << #imm) 
Rd = (Ra << Rx) where Rx has the # bits to shift Ra to the left. 

ADD Rd, Ra, Rb 
ADD Rd, Ra, #imm 
ADD Rd, #imm 

Rd = Ra + Rb 
Rd = Ra + #imm 
Rd = Rd + #imm 

SUB Rd, Ra, Rb 
SUB Rd, Ra, #imm 
SUB Rd, #imm 

Rd = Ra - Rb 
Rd = Ra - #imm 
Rd = Rd - #imm 

MUL Rd, Ra, Rb 
MUL Rd, Ra, #imm 

Rd = Ra * Rb 
Rd = Ra * (#imm) 

CMP Rd, #imm 
CMP Rd, Ra 

Set Z = 1 if Rd == #imm. Otherwise, Z = 0. (Z is the Zero field of the CPSR.) 
Set Z = 1 if Rd == Ra. Otherwise, Z = 0. 
Notice that N != V is Rd < #imm or Rd < Ra. 

BEQ, BNE, BLT, BGE, 
BGT Branch 

LDR Rd, [Ra, #imm] Load the data stored at [Ra + #imm] to Rd. 
STR Rd, [Ra, #imm] Store the data stored in Rd to [Ra + #imm]. 
 


