
EE234

Microprocessor Systems

Midterm Exam 1

Oct. 8, 2021. (2:10pm – 3pm)

Instructor: Dae Hyun Kim (daehyun@eecs.wsu.edu)

 Name:

 WSU ID:

Problem Points
1 10
2 10
3 20
4 20
5 30
6 30

Total 120

mailto:daehyun@eecs.wsu.edu

Problem #1 (Bit manipulation, 10 points)

Suppose R# is an 8-bit register. The data stored in R# is treated as an unsigned binary
number. R1 has an input data. The following two instructions perform an arithmetic
operation. Explain what it does (i.e., briefly explain the meaning of the data stored in R2
in terms of arithmetic operations) or draw a graph of (R1 vs. R2). Here, “arithmetic”
means something like addition, subtraction, multiplication, division (quotient), division
(remainder), square root, transcendental functions, etc.

AND R2, R1, #0xFD

ORR R2, R2, #0x01

Problem #2 (Bit manipulation, 10 points)

Suppose R# is an 8-bit register. The data stored in R# is treated as an unsigned binary
number. R1 has an input data. The following instruction performs an arithmetic
operation. Explain what it does (i.e., briefly explain the meaning of the data stored in R2
in terms of arithmetic operations) or draw a graph of (R1 vs. R2). Here, “arithmetic”
means something like addition, subtraction, multiplication, division (quotient), division
(remainder), square root, transcendental functions, etc.

AND R2, R1, #0xBF

Problem #3 (ARM assembly, 20 points)

What is the value of the data stored in R1 when the following program ends?

Problem #4 (ARM assembly, 20 points)

What is the value of the data stored in R3 when the program ends?

Problem #5 (ARM assembly, 30 points)

Make an assembly code for the following C code.

• Use the assembly instructions listed in the last page only.
• a is in R0, b is in R1, and c is in R2.
• The exit point (the end of the if statement) could be just an address label.

Problem #6 (ARM assembly, 30 points)

Let’s use the 32-bit ARM architecture, i.e., R# is a 32-bit register and the register file
has 16 registers (you can use R0~R12 only). R0 has a positive number (given to you).
We want to check whether the number in R0 is a square number (i.e., 𝑛𝑛2) or not. If it is,
we set R1 to 1. If not, we set R1 to 0. Here is an algorithm for that.

1) If R0 is 0, R1 = 0. Done.

2) If R0 is 1, R1 = 1. Done.

3) If R0≥ 2, try to compare 12 with R0, 22 with R0, ..., 𝑛𝑛2 with R0. If 𝑛𝑛2==R0, R1 = 1.
Done. If (𝑛𝑛 − 1)2<R0 and 𝑛𝑛2>R0, R1 = 0. Done.

Simply speaking, suppose 35 is given (in R0). Then, 12 = 1 < 35, 22 = 4 < 35, 32 = 9 <
35, 42 = 16 < 35, 52 = 25 < 35, 62 = 36 > 35, so we know that 35 is not a square
number.

Write an assembly code running the above algorithm. Use only the instructions shown
in the instruction sheet. Assume that R0 has a given number. The performance of the
code doesn’t matter as long as the code works. You can’t use multiply instructions, so
you should use ADD to compute 𝑛𝑛2.

Assembly Instructions

R# is a register. (# = 0 ~ 12)

Instruction Meaning

MVN Rd, Ra
Bitwise inversion. (Rd = Bitwise-NOT Ra)

Before 0 0 0 0 1 1 0 0
After 1 1 1 1 0 0 1 1

AND Rd, Ra, Rb
AND Rd, Ra, #imm

Bitwise AND. (Rd = Ra AND Rb), (Rd = Ra AND #imm)
Ra 0 0 0 0 1 1 1 1
Rb 1 1 1 1 0 1 1 1

Rd 0 0 0 0 0 1 1 1

ORR Rd, Ra, Rb
ORR Rd, Ra, #imm

Bitwise OR. (Rd = Ra OR Rb), (Rd = Ra OR #imm)
Ra 0 0 0 0 1 1 0 0
Rb 1 1 0 1 0 0 1 0

Rd 1 1 0 1 1 1 1 0

EOR Rd, Ra, Rb
EOR Rd, Ra, #imm

Bitwise exclusive-OR. (Rd = Ra ⊕ Rb), (Rd = Ra ⊕ #imm)
Ra 0 1 0 1 0 1 0 1
Rb 1 1 0 1 0 0 1 0

Rd 1 0 0 0 0 1 1 1

MOV Rd, Ra, LSR #imm

Logical shift right by (#imm) bits. (Rd = Ra >> #imm)
Ex) #imm = 3

Before 1 0 0 0 1 1 0 1
After 0 0 0 1 0 0 0 1

MOV Rd, Ra, LSL #imm

Logical shift left by (#imm) bits. (Rd = Ra << #imm)
Ex) #imm = 3

Before 1 0 0 0 1 1 0 1
After 0 1 1 0 1 0 0 0

MOV Rd, Ra
MOV Rd, #imm

(Rd = Ra)
(Rd = #imm)

ADD Rd, Ra, Rb
ADD Rd, Ra, #imm

(Rd = Ra + Rb)
(Rd = Ra + #imm)

SUB Rd, Ra, Rb
SUB Rd, Ra, #imm

(Rd = Ra - Rb)
(Rd = Ra - #imm)

CMP Rd, #imm
CMP Rd, Ra

Set Z = 1 if Rd == #imm. Otherwise, Z = 0. (Z is the Zero field of the CPSR.)
Set Z = 1 if Rd == Ra. Otherwise, Z = 0.
Notice that N != V is Rd < #imm or Rd < Ra.

B [addr] Jump to [addr] unconditionally
BEQ, BNE, BLT, BGT,
BGE, BLE [addr]

Branch to [addr] if (BEQ: R1 == R2), (BNE: R1 != R2), (BLT: R1 < R2), (BGT:
R1 > R2), (BGE: R1 >= R2), (BLE: R1 <= R2)

LDR Rd, [Ra, #imm] Load the data stored at [Ra + #imm] to Rd.
STR Rd, [Ra, #imm] Store the data stored in Rd to [Ra + #imm].

