EE234

Microprocessor Systems

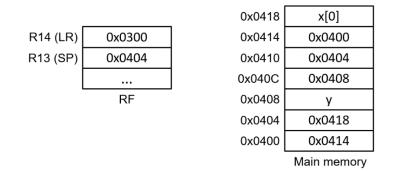
Final Exam

Dec. 12, 2022. (1:10pm – 4:00pm)

Instructor: Dae Hyun Kim (<u>daehyun@eecs.wsu.edu</u>)

Name:

WSU ID:


Problem	Points	
1	20	
2	20	
3	30	
4	30	
5	30	
Total	130	

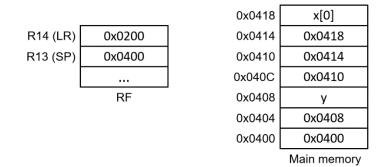
Problem #1 (1D Array, 20 points)

We have two arrays as follows:

- int x[100]: Static array.
- int* y = new int[100]: Dynamic array.

The following shows the register file (RF) and main memory.

Translate the following assembly code into a C code (hint: it is a "for" loop).


MOV R0, #0 if:	Let R0=k. Then, k=0. If k < 34, we are done. Otherwise, we go through the loop and at the end, we increase k by 1 (k++). This
CMP R0, #34	becomes a for loop.
BLT loop	
B end	for (int k = 0 ; k < 34 ; k++) {}
loop:	
MUL R1, R0, #3	Now, R1 = SP + 20 + 4*3*k, so it is &(x[3*k]). R2 = x[3k]+3.
MUL R1, R1, #4	$P_{2} = [S_{2} + 4] = v = 8(v[0])$
ADD R1, R1, #20	R3 = [SP+4] = y = &(y[0]).
ADD R1, R1, SP	$R4 = y + 4^{*}(k+1) = \&(y[k+1]).$
LDR R2, [R1]	$\mathbf{x}_{\mathbf{y}} = \mathbf{y} + \mathbf{y} + \mathbf{x}_{\mathbf{y}} = \mathbf{x}_{\mathbf{y}} \mathbf{y}_{\mathbf{x}} \mathbf{x}_{\mathbf{y}} \mathbf{y}_{\mathbf{x}}.$
ADD R2, R2, #3	Thus, $y[k+1] = x[3k] + 3$.
LDR R3, [SP, #4]	
ADD R4, R0, #1	The answer is
MUL R4, R4, #4	
ADD R4, R3, R4	for (int k = 0 ; k < 34 ; k++) {
STR R2, [R4]	
ADD R0, R0, #1	$y[k+1] = x[3^{*}k] + 3;$
B if	
end:	}

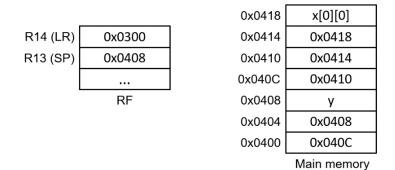
Problem #2 (1D Array, 20 points)

We have an array as follows:

• int* y = new int[100]: Dynamic array.

The following shows the register file (RF) and main memory.

Write an assembly code for the following C code. R0-R12 are all available. You can use registers for "int a" and "int k".


int a = y[0];	LDR R7, [SP, #8]
for (int k = 0 ; k < 99 ; k++) { y[k] = y[k+1];	LDR R7, [R7] MOV R0, #0 for:
y[n] = y[n + i], }	CMP R0, #99
	BGE for_end
y[99] = a;	LDR R1, [SP, #8]
	ADD R2, R0, #1
	MUL R2, R2, #4
	ADD R2, R1, R2
	LDR R2, [R2]
	MUL R3, R0, #4
	ADD R3, R1, R3
	STR R2, [R3]
	ADD R0, R0, #1
	B for
	for_end:
	MOV R0, #99
	MUL R0, R0, #4
	ADD R1, R1, R0
	STR R7, [R1]

Problem #3 (2D Array, 30 points)

We have two arrays as follows:

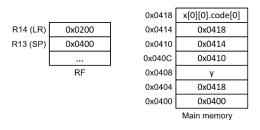
- int x[10][10]: Static array.
- int** y = new int*[10]
- for (int k = 0 ; k < 10 ; k++)
 - y[k] = new int[10];

The following shows the register file (RF) and main memory.

Write an assembly code for the following C code. R0-R12 are all available. You can use registers for "int k" and "int p". This code converts the rows (or columns) of y to columns (or rows).

```
MOV R0, #0
for (int k = 0; k < 10; k++) {
                                           for1:
 for (int p = 0; p < 10; p++) {
                                            CMP R0, #10
                                            BGE for1_end
   x[p][k] = y[k][p];
                                            MOV R1, #0
 }
                                           for2:
                                            CMP R1, #10
}
                                            BGE for2_end
                                           loop:
                                            LDR R2, [SP]
                                            MUL R3, R0, #4
                                            ADD R3, R2, R3
                                            LDR R2, [R3]
                                            MUL R3, R1, #4
                                            ADD R3, R2, R3
                                            LDR R3, [R3]
                                            MUL R4, R1, #10
                                            MUL R4, R4, #4
                                            ADD R4, R4, #16
                                            ADD R4, R4, SP
                                            MUL R5, R0, #4
                                            ADD R4, R4, R5
                                            STR R3, [R4]
                                            ADD R1, R1, #1
                                            B for2
                                           for2_end:
                                            ADD R0, R0, #1
                                            B for1
                                           for1_end:
```

Problem #4 (2D Array, 30 points)


The following shows a structure definition.

```
struct Airport {
    int code[4];
};
```

We have two arrays as follows:

- Airport x[10][10]: Static array.
- Airport** y = new Airport*[10];
- for (int k = 0 ; k < 10 ; k++)
 - y[k] = new Airport[10];

The following shows the register file (RF) and main memory.

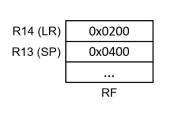
Write an assembly code for the following C code. R0-R12 are all available. You can use registers for "int k" and "int p".

Problem #5 (30 points)

See the following C code.

```
int p[5][20];
int* x = new int[100];
int** y = new int*[5];
for ( int k = 0 ; k < 5 ; k++ ) {
   y[k] = &(x[20*k]);
}
```

We want to copy the 2-D array "y" to the 2-D array "p", but we will use "x" for "y" as follows:


(1) Express "A" in "p[A][B]" as a function of "k" and some constants. (5 points)

A = k / 20

(2) Express "B" in "p[A][B]" as a function of "k" and some constants. (5 points)

B = k % 20

(3) Write an assembly code for the above code copying the array using "x". R0-R12 are all available. You can use registers for "int k". Use the following RF and main memory map. (20 points)

0x0418	p[0][0]
0x0414	0x0418
0x0410	х
0x040C	0x0410
0x0408	У
0x0404	0x0408
0x0400	0x0408
	Main memory

MOV R0, #0
,
for:
CMP R0, #100
BGE end
LDR R1, [SP, #16]
MUL R2, R0, #4
ADD R1, R1, R2
LDR R1, [R1]
ADD R2, SP, #24
MUL R3, R0, #4
ADD R2, R2, R3
STR R1, [R2]
ADD R0, R0, #1
B for
end: