
EE234

Microprocessor Systems

Midterm Exam 1

Oct. 10, 2022. (2:10pm – 3pm)

Instructor: Dae Hyun Kim (daehyun@eecs.wsu.edu)

 Name:

 WSU ID:

Problem Points
1 10
2 10
3 20
4 30
5 30

Total 100

mailto:daehyun@eecs.wsu.edu

Problem #1 (Bit manipulation, 10 points)

Suppose R# is a 16-bit register. The data stored in R# is treated as an unsigned binary
number. R1 has an input data. The following two instructions perform an arithmetic
operation. Explain what it does (i.e., briefly explain the meaning of the data stored in R2
in terms of arithmetic operations) or draw a graph of (R1 vs. R2). Here, “arithmetic”
means something like addition, subtraction, multiplication, division (quotient), division
(remainder), square root, transcendental functions, etc. Ignore overflow/underflow
exceptions in the operations.

MOV R2, R1, LSL #2

EOR R2, R2, #0x0002

Input: 𝑥𝑥15𝑥𝑥14 … 𝑥𝑥2𝑥𝑥1𝑥𝑥0

Output: 𝑥𝑥13𝑥𝑥12 … 𝑥𝑥210

𝑌𝑌 = 4𝑋𝑋 + 2

Problem #2 (Bit manipulation, 10 points)

Suppose R# is an 8-bit register. 𝑅𝑅1 and 𝑅𝑅2 are given as follows:

𝑅𝑅1 = 𝑥𝑥7𝑥𝑥6𝑥𝑥5𝑥𝑥4 𝑥𝑥3𝑥𝑥2𝑥𝑥1𝑥𝑥0

𝑅𝑅2 = 𝑦𝑦7𝑦𝑦6𝑦𝑦5𝑦𝑦4 𝑦𝑦3𝑦𝑦2𝑦𝑦1𝑦𝑦0

Write an assembly code to generate 𝑅𝑅3 from 𝑅𝑅1 and 𝑅𝑅2. You can use the following
instructions only. (&: logical AND. |: logical OR, ^: logical XOR)

• AND, ORR, EOR, MOV (including LSL, LSR)

𝑅𝑅3 = (1)(0)(𝑥𝑥1���)(𝑦𝑦0���) (𝑥𝑥7&𝑦𝑦7)(0)(1)(0)

(i.e., if 𝑅𝑅3 = 𝑎𝑎7𝑎𝑎6 …𝑎𝑎0, then 𝑎𝑎7 = 1, 𝑎𝑎6 = 0, 𝑎𝑎5 = 𝑥𝑥1���,𝑎𝑎4 = 𝑦𝑦0���, 𝑎𝑎3 = 𝑥𝑥7&𝑦𝑦7,𝑎𝑎2 = 0,𝑎𝑎1 =
1,𝑎𝑎0 = 0.)

MOV R4, R1, LSL #4 // R4 = 𝑥𝑥3𝑥𝑥2𝑥𝑥1𝑥𝑥0 0000

AND R4, R4, #0x20 // R4 = 00𝑥𝑥10 0000

MOV R5, R2, LSL #4 // R5 = 𝑦𝑦3𝑦𝑦2𝑦𝑦1𝑦𝑦0 0000

AND R5, R5, #0x10 // R5 = 000𝑦𝑦0 0000

ORR R4, R4, R5 // R4 = 00𝑥𝑥1𝑦𝑦0 0000

EOR R4, R4, #0xB0 // R4 = 10𝑥𝑥1���𝑦𝑦0��� 0000

MOV R5, R1, LSR #4 // R5 = 0000 𝑥𝑥7𝑥𝑥6𝑥𝑥5𝑥𝑥4

MOV R6, R2, LSR #4 // R6 = 0000 𝑦𝑦7𝑦𝑦6𝑦𝑦5𝑦𝑦4

AND R5, R5, R6 // R5 = 0000 (𝑥𝑥7&𝑦𝑦7)𝑋𝑋𝑋𝑋𝑋𝑋

AND R5, R5, #0x08 // R5 = 0000 (𝑥𝑥7&𝑦𝑦7)000

EOR R5, R5, #0x02 // R5 = 0000 (𝑥𝑥7&𝑦𝑦7)010

ORR R3, R4, R5 // R3 = 10𝑥𝑥1���𝑦𝑦0��� (𝑥𝑥7&𝑦𝑦7)010

Problem #3 (ARM assembly, 20 points)

(20 points) What is the value of the data stored in R0 when the following program ends?

Iter R0 R1 R2 R3 R4 R5
 ? 1 1 0 4 ?
1 0+2+1=3 3 1 1 5 2
2 4+2+3=9 9 3 1 6 2
3 4+6+9=19 19 9 3 7 6
4 12+18+19=49 18

Thus, R0 has 49.

Problem #4 (ARM assembly, 30 points)

What is the value of the data stored in R5 when the program ends?

(Hint: This code has three “for” loops. You can translate the code into a C code, and
then analyze it.)

R5 = 0
for (R1 = 1 ; R1 <= 5 ; R1++) {
 for (R2 = R1 ; R2 <= 5 ; R2++) {
 for (R3 = R2 ; R3 <= 5 ; R3++) {
 R5 += R3;
 }
 }
}
R1: 1 to 5. For each R1, R2: R1 to 5. For each R2, R3: R2 to 5.

R1 = 1: R2 = 1~5: R3 = sum(1~5) + sum(2~5) + … + sum(5~5)

R1 = 2: R2 = 2~5: R3 = sum(2~5) + sum(3~5) + … + sum(5~5)

…

R1 = 5: R2 = 5: R3 = sum(5~5)

Thus, R5 has 1*sum(1~5) + 2*sum(2~5) + 3*sum(3~5) + … + 5*sum(5~5) = 15 + 2*14 +
3*12 + 4*9 + 5*5 = 15 + 28 + 36 + 36 + 25 = 140

Problem #5 (ARM assembly, 30 points)

Translate the following C code into an assembly code.

• Use the assembly instructions listed in the last page only.
• a is in R0, b is in R1, and c is in R2.
• The exit point (the end of the if statement) could be just an address label.

MOV R0, #0
MOV R1, #0
MOV R2, #0

while:
CMP R0, #10
BGE end
CMP R1, #10
BGE end
ADD R0, R0, #1
ADD R1, R1, R0
CMP R2, #20
BNE end
ADD R2, R2, R1
B while

end:

