
EE234

Microprocessor Systems

Midterm Exam 1

Oct. 13, 2023. (2:10pm – 3pm)

Instructor: Dae Hyun Kim (daehyun@eecs.wsu.edu)

 Name:

 WSU ID:

Problem Points
1 10
2 10
3 20
4 30
5 30

Total 100

mailto:daehyun@eecs.wsu.edu

Problem #1 (Bit manipulation, 10 points)

Suppose R# is an 8-bit register. The data stored in R# is treated as an unsigned binary
number. R1 has an input data. The following two instructions perform an arithmetic
operation. Explain what it does (i.e., briefly explain the meaning of the data stored in R2
in terms of arithmetic operations) or draw a graph of (R1 vs. R2). Here, “arithmetic”
means something like addition, subtraction, multiplication, division (quotient), division
(remainder), square root, transcendental functions, etc. Ignore overflow/underflow
exceptions in the operations.

MOV R2, R1, LSR #3

MOV R2, R2, LSL #2

If we divide R1 by 2, then we obtain 0𝑥𝑥7𝑥𝑥6𝑥𝑥5𝑥𝑥4𝑥𝑥3𝑥𝑥2𝑥𝑥1. Then, then two LSBs are cleared.

𝑅𝑅2 = �
�𝑅𝑅12 �

4 � × 4 = �
𝑅𝑅1
8
� × 4

Problem #2 (Bit manipulation, 10 points)

Suppose R# is an 8-bit register. 𝑅𝑅1 and 𝑅𝑅2 are given as follows:

𝑅𝑅1 = 𝑥𝑥7𝑥𝑥6𝑥𝑥5𝑥𝑥4 𝑥𝑥3𝑥𝑥2𝑥𝑥1𝑥𝑥0

𝑅𝑅2 = 𝑦𝑦7𝑦𝑦6𝑦𝑦5𝑦𝑦4 𝑦𝑦3𝑦𝑦2𝑦𝑦1𝑦𝑦0

Write an assembly code to generate 𝑅𝑅3 from 𝑅𝑅1 and 𝑅𝑅2. You can use the following
instructions only. (&: logical AND. |: logical OR, ^: logical XOR)

• AND, ORR, EOR, MOV (including LSL, LSR)

𝑅𝑅3 = 𝑥𝑥7��� 𝑦𝑦6 𝑦𝑦5��� 𝑥𝑥4 𝑥𝑥3 𝑥𝑥2��� 𝑦𝑦1 𝑦𝑦0���

EOR R3, R1, #0b1000 0100

AND R3, R3, #0b 1001 1100

EOR R4, R2, #0b 0010 0001

AND R4, R4, #0b 0110 0011

ORR R3, R3, R4

Problem #3 (ARM assembly, 20 points)

What is the value of the data stored in R6 when the following program ends?

R0 R1 R2 R3 R4 R5 R6
0 10 20
 2 10 12 24
1 20 24
 5 12 17 34
2 24 34
 6 17 23 46
3 34 46
 8 23 31 62

R6 = 62

Problem #4 (ARM assembly, 30 points)

What is the value of the data stored in R0 when the program ends?

(Hint: Translate the code into a C code, and then analyze it.)

Let R0=x, R1=a, R2=b, R3=c, R4=d. Then the code becomes

x=0; a=0;

If (a >= 100), then go to the end of the code.

Otherwise (i.e., a < 100), b = a + 1. Then

If (b >= 100) , then go to loop2_end. In this case, a++; then go to the first if.

Otherwise (i.e., b < 100), c = a & 3. If (c != 0), then b++ and go to the second if.

If (c == 0), then d = b & 7. If (d != 0), then b++ and go to the second if.

Otherwise (i.e., c == 0 and d == 0), x++ and then b++ and go to the second if. Thus, the
code is like this:

a&3==0 when a is an integer multiple of 4.

b&7==0 when b is an integer multiple of 8.

Whenever this occurs, x is increased by 1.

Integer multiples of 4 (for a) in the range of 0, 1, …, 99 => 0, 4, 8, 12, …, 96. 25 cases.

a=0: integer multiples of 8 (for b) in the range of 1, …, 99 => 12 cases.

a=4: integer multiples of 8 (for b) in the range of 5, …, 99 => 12 cases.

a=8: integer multiples of 8 (for b) in the range of 9, …, 99 => 11 cases.

…

a=80: integer multiples of 8 (for b) in the range of 81, …, 99 => 2 cases.

a=84: integer multiples of 8 (for b) in the range of 85, …, 99 => 2 cases.

a=88: integer multiples of 8 (for b) in the range of 89, …, 99 => 1 case.

a=92: integer multiples of 8 (for b) in the range of 93, …, 99 => 1 case.

a=96: integer multiples of 8 (for b) in the range of 97, …, 99 => no case.

Thus, x = 12*2 + 11*2 + … + 1*2 = 78*2=156

Problem #5 (ARM assembly, 30 points)

Translate the following C code into an assembly code.

• Use the assembly instructions listed in the last page only.
• a is in R0, b is in R1, c is in R2, and d is in R3.
• The exit point (the end of the if statement) could be just an address label.

Assembly Instructions

R# is a register. (# = 0 ~ 12)

Instruction Meaning

MVN Rd, Ra
Bitwise inversion. (Rd = Bitwise-NOT Ra)

Before 0 0 0 0 1 1 0 0
After 1 1 1 1 0 0 1 1

AND Rd, Ra, Rb
AND Rd, Ra, #imm

Bitwise AND. (Rd = Ra AND Rb), (Rd = Ra AND #imm)
Ra 0 0 0 0 1 1 1 1
Rb 1 1 1 1 0 1 1 1

Rd 0 0 0 0 0 1 1 1

ORR Rd, Ra, Rb
ORR Rd, Ra, #imm

Bitwise OR. (Rd = Ra OR Rb), (Rd = Ra OR #imm)
Ra 0 0 0 0 1 1 0 0
Rb 1 1 0 1 0 0 1 0

Rd 1 1 0 1 1 1 1 0

EOR Rd, Ra, Rb
EOR Rd, Ra, #imm

Bitwise exclusive-OR. (Rd = Ra ⊕ Rb), (Rd = Ra ⊕ #imm)
Ra 0 1 0 1 0 1 0 1
Rb 1 1 0 1 0 0 1 0

Rd 1 0 0 0 0 1 1 1

MOV Rd, Ra, LSR #imm

Logical shift right by (#imm) bits. (Rd = Ra >> #imm)
Ex) #imm = 3

Before 1 0 0 0 1 1 0 1
After 0 0 0 1 0 0 0 1

MOV Rd, Ra, LSL #imm

Logical shift left by (#imm) bits. (Rd = Ra << #imm)
Ex) #imm = 3

Before 1 0 0 0 1 1 0 1
After 0 1 1 0 1 0 0 0

MOV Rd, Ra
MOV Rd, #imm

(Rd = Ra)
(Rd = #imm)

ADD Rd, Ra, Rb
ADD Rd, Ra, #imm

(Rd = Ra + Rb)
(Rd = Ra + #imm)

SUB Rd, Ra, Rb
SUB Rd, Ra, #imm

(Rd = Ra - Rb)
(Rd = Ra - #imm)

CMP Rd, #imm
CMP Rd, Ra

Set Z = 1 if Rd == #imm. Otherwise, Z = 0. (Z is the Zero field of the CPSR.)
Set Z = 1 if Rd == Ra. Otherwise, Z = 0.
Notice that N != V is Rd < #imm or Rd < Ra.

B [addr] Jump to [addr] unconditionally
BEQ, BNE, BLT, BGT,
BGE, BLE [addr]

Branch to [addr] if (BEQ: R1 == R2), (BNE: R1 != R2), (BLT: R1 < R2), (BGT:
R1 > R2), (BGE: R1 >= R2), (BLE: R1 <= R2)

LDR Rd, [Ra, #imm] Load the data stored at [Ra + #imm] to Rd.
STR Rd, [Ra, #imm] Store the data stored in Rd to [Ra + #imm].

