
EE234

Microprocessor Systems

Midterm Exam 2

Nov. 15, 2023. (2:10pm – 3pm)

Instructor: Dae Hyun Kim (daehyun@eecs.wsu.edu)

 Name:

 WSU ID:

Problem Points
1 20
2 40
3 40

Total 100

mailto:daehyun@eecs.wsu.edu

Problem #1 (Stack and Subroutines, 20 points)

Correct: +2.5 points. Wrong: -2.5 points. Min: 0.

Assume

• The system we are talking about is single-threaded, single-application.
• Function arguments and return values are processed in the stack.

Answer the following questions.

• The maximum size of the stack in a main memory is dependent on the capacity
of the main memory. (True / False)

• The maximum size of the stack in a main memory is dependent on the size of the
application code being executed. (True / False)

• If a code contains a recursive function call, it might cause a stack overflow error
while the recursive function call is being executed. (True / False)

• If a function has many many many arguments, calling the function might cause a
stack overflow error. (True / False)

• If a function has one argument, calling the function will never cause a stack
overflow error. (True / False)

• If a function has no argument, calling the function will never cause a stack
overflow error. (True / False)

• If a function has no argument and no return value, calling the function will never
cause a stack overflow error. (True / False)

• If a function has no argument, no return value, and no function call in it, calling
the function will never cause a stack overflow error. (True / False)

Problem #2 (Subroutines and Stack, 40 points)

Answer the following questions for the assembly code shown below.

The main function looks like this in C/C++:

(1) (30 points) Translate the assembly code of the com() function into a C code. It has
one argument and one return value.

(2) (10 points) What is the value stored at [SP+4] when the program ends? (You get 10
points only when you solve the first part above and answer this question correctly.)

Problem #3 (Subroutines and Stack, 40 points)

You should use the following instructions only.

• Instructions
o ADD, SUB
o AND, ORR, EOR
o CMP, BGE/BLT/BGT/BLE/BEQ/BNE
o B, BL, BX
o MOV
o LDR, STR

Write an assembly code for the following C code (the line s=com(a,b) in the main function and
the com() function).

The following shows the memory map for the function call. (a) in the main function. (b) for the
function call.

• In the main function, assume that R0-R12 are being used by other variables (right before
the function call s=com(a,b)). This means that you should preserve their values if you
want to use any of them.

• Use the stack memory for the function arguments and the return value (shown in (b)).

Assembly Instructions

R# is a register. (# = 0 ~ 12)

Instruction Meaning

MVN Rd, Ra
Bitwise inversion. (Rd = Bitwise-NOT Ra)

Before 0 0 0 0 1 1 0 0
After 1 1 1 1 0 0 1 1

AND Rd, Ra, Rb
AND Rd, Ra, #imm

Bitwise AND. (Rd = Ra AND Rb), (Rd = Ra AND #imm)
Ra 0 0 0 0 1 1 1 1
Rb 1 1 1 1 0 1 1 1

Rd 0 0 0 0 0 1 1 1

ORR Rd, Ra, Rb
ORR Rd, Ra, #imm

Bitwise OR. (Rd = Ra OR Rb), (Rd = Ra OR #imm)
Ra 0 0 0 0 1 1 0 0
Rb 1 1 0 1 0 0 1 0

Rd 1 1 0 1 1 1 1 0

EOR Rd, Ra, Rb
EOR Rd, Ra, #imm

Bitwise exclusive-OR. (Rd = Ra ⊕ Rb), (Rd = Ra ⊕ #imm)
Ra 0 1 0 1 0 1 0 1
Rb 1 1 0 1 0 0 1 0

Rd 1 0 0 0 0 1 1 1

MOV Rd, Ra, LSR #imm

Logical shift right by (#imm) bits. (Rd = Ra >> #imm)
Ex) #imm = 3

Before 1 0 0 0 1 1 0 1
After 0 0 0 1 0 0 0 1

MOV Rd, Ra, LSL #imm

Logical shift left by (#imm) bits. (Rd = Ra << #imm)
Ex) #imm = 3

Before 1 0 0 0 1 1 0 1
After 0 1 1 0 1 0 0 0

MOV Rd, Ra
MOV Rd, #imm

(Rd = Ra)
(Rd = #imm)

ADD Rd, Ra, Rb
ADD Rd, Ra, #imm

(Rd = Ra + Rb)
(Rd = Ra + #imm)

SUB Rd, Ra, Rb
SUB Rd, Ra, #imm

(Rd = Ra - Rb)
(Rd = Ra - #imm)

CMP Rd, #imm
CMP Rd, Ra

Set Z = 1 if Rd == #imm. Otherwise, Z = 0. (Z is the Zero field of the CPSR.)
Set Z = 1 if Rd == Ra. Otherwise, Z = 0.
Notice that N != V is Rd < #imm or Rd < Ra.

B [addr] Jump to [addr] unconditionally
BEQ, BNE, BLT, BGT,
BGE, BLE [addr]

Branch to [addr] if (BEQ: R1 == R2), (BNE: R1 != R2), (BLT: R1 < R2), (BGT:
R1 > R2), (BGE: R1 >= R2), (BLE: R1 <= R2)

LDR Rd, [Ra, #imm] Load the data stored at [Ra + #imm] to Rd.
STR Rd, [Ra, #imm] Store the data stored in Rd to [Ra + #imm].

